146 resultados para 1,4-Diamino-2-butanone
Resumo:
From the upper 300 m of CRP-2/2A, twenty-six samples of diamicts and deformation structures have been thin sectioned. These have been analysed for texture, structure, diagenesis and plasmic fabric. The combination of certain microstructures (e.g. turbate and linear) and plasmic fabric development is indicative of grounded ice. Clear evidence for two grounded ice events (three samples) was found in the upper Oligocene part of the core. The interpretation of ten more samples is less certain, but as for CRP-1, is taken to point to grounded ice as well. There is a strong correlation between these indications for grounded ice and the basal part of cycles in the sequence stratigraphy.
Resumo:
Glacier inventories provide the basis for further studies on mass balance and volume change, relevant for local hydrological issues as well as for global calculation of sea level rise. In this study, a new Austrian glacier inventory has been compiled, updating data from 1969 (GI 1) and 1998 (GI 2) based on high-resolution lidar digital elevation models (DEMs) and orthophotos dating from 2004 to 2012 (GI 3). To expand the time series of digital glacier inventories in the past, the glacier outlines of the Little Ice Age maximum state (LIA) have been digitalized based on the lidar DEM and orthophotos. The resulting glacier area for GI 3 of 415.11 ± 11.18 km**2 is 44% of the LIA area. The annual relative area losses are 0.3%/yr for the ~119-year period GI LIA to GI 1 with one period with major glacier advances in the 1920s. From GI 1 to GI 2 (29 years, one advance period of variable length in the 1980s) glacier area decreased by 0.6% yr?1 and from GI 2 to GI 3 (10 years, no advance period) by 1.2%/yr. Regional variability of the annual relative area loss is highest in the latest period, ranging from 0.3 to 6.19%/yr. The mean glacier size decreased from 0.69 km**2 (GI 1) to 0.46 km**2 (GI 3), with 47% of the glaciers being smaller than 0.1 km**2 in GI 3 (22%).
Resumo:
Composition of ore minerals in MAR sulflde occurrences related to ultramaflc rocks was studied using methods of mineragraphy, electron microscopy, microprobe analysis, and X-ray analysis. Objects are located at various levels of maturity of sulflde mounds owing to differences in age, duration and degree of activity of the following hydrothermal systems: generally inactive Logatchev-1 field (up to 66.5 ka old), inactive Logatchev-2 field (3.9 ka), and generally active Rainbow field (up to 23 ka). Relative to MAR submarine ore occurrences in the basalt substrate, mineralization in the hydrothermal fields mentioned above is characterized by high contents of Au, Cd, Co, and Ni, along with presence of accessory minerals of Co and Ni. The studied mounds differ in quantitative ratios of major minerals and structural-textural features of ores that suggest their transformation. Ores in the Logatchev-1 field are characterized by the highest Cu content and development of a wide range of multistage contrast exsolution structures of isocubanite and bornite. In the Logatchev-2 field, sphalerite-chalcopyrite and gold-arsenic exsolution structures are present, but isocubanite exsolution structures are less diverse and contrast. The Rainbow field is marked by presence of homogenous isocubanite and the subordinate development of exsolution structures. The authors have identified four new phases in the Cu-Fe-S system. Phases X and Y (close to chalcopyrite and isocubanite, respectively) make up lamellae among isocubanite exsolution products in the Logatchev-1 and Logatchev-2 fields. Phase Y includes homogenous zones in zonal chimneys of the Rainbow field. Phases A and B formed in the orange bornite domain at low-temperature alteration of chalcopyrite in the Logatchev-1 field. Mineral assemblages of the Cu-S system are most abundant and diverse in the Logatchev-1 field, but their development is minimal in the Logatchev-2 field where mainly Cu-poor sulfides of the geerite-covellite series have been identified. Specific features of mineral assemblages mentioned above reflect the maturity grade of sulfide mounds and can serve as indicators of maturity.
Resumo:
TEM (transmission electron microscopy) observations and microanalyses on smectite microparticles in the sediments of the CRP-2A core were carried out to determine their origin (authigenic or detrital) and the source rocks. Smectites are dioctahedral and are Fe-rich members of the nontronite-beidellite series. They generally display both flaky and hairy shapes, but no large compositional difference between the two forms was observed. Flaky smectites are detrital while hairy smectites probably formed in situ through the reorganisation of previous flaky particles. The source rocks for smectites are probably represented by the McMurdo Volcanic Group to the south, but also by the Ferrar Dolerites and Kirkpatrick Basalts in the Transantarctic Mountains. CRP-2A smectites are Fe and Mg richer than those of the coeval or not coeval levels of the CIROS-I, DSDP 270 and 274 cores. The average compositions of smectite in CRP-1 and CRP-2A cores show a downcore trend toward more alluminiferous terms, which might reflect the increase of the chemical weathering processes on the continent.
Resumo:
Structure and composition of sub-surface bottom sediments from the southwest Barents Sea have been under study. The study has revealed heterogeneity of sediment structure resulted from temporal irregularity and variability of sedimentation processes. The study of the heavy minerals from 0.1-0.01 mm grain size fraction has shown prevalence of green hornblende, epidote, garnet, and ilmenite in all types of sediments; these minerals are the basis of terrigenous-mineralogical province. At the same time in different areas local terrigenous-mineralogical associations have been identified. Clay mineral composition of in the sediments was quite uniform: biotite, chlorite, hydromica, smectite. Despite this, a number of features indicating initial stages of clay mineral transformation has been identified. Differences in material composition and structure of the studied sediments are associated with rapid change in paleogeographic situation on the land - ice cover melting on the Kola Peninsula and subsequent Holocene climatic situation.