125 resultados para 060205 Marine and Estuarine Ecology (incl. Marine Ichthyology)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains aboveground community biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2004 just prior to mowing (during peak standing biomass in late May and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in four rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains aboveground community biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2007 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in four (May) or three (August) rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains aboveground community biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2006 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in four rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains three time series of measurements of soil carbon (particular and dissolved) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Particulate soil carbon: Stratified soil sampling was performed every two years since before sowing in April 2002 and was repeated in April 2004, 2006 and 2008 to a depth of 30 cm segmented to a depth resolution of 5 cm giving six depth subsamples per core. Total carbon concentration was analyzed on ball-milled subsamples by an elemental analyzer at 1150°C. Inorganic carbon concentration was measured by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon. 2. Particulate soil carbon (high intensity sampling): In one block of the Jena Experiment soil samples were taken to a depth of 1 m (segmented to a depth resolution of 5 cm giving 20 depth subsamples per core) with three replicates per block ever 5 years starting before sowing in April 2002. Samples were processed as for the more frequent sampling. 3. Dissolved organic carbon: Suction plates installed on the field site in 10, 20, 30 and 60 cm depth were used to sample soil pore water. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer. Annual mean values of DOC are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification (OA) poses a severe threat to tropical coral reefs, yet much of what is know about these effects comes from individual corals and algae incubated in isolation under high pCO2. Studies of similar effects on coral reef communities are scarce. To investigate the response of coral reef communities to OA, we used large outdoor flumes in which communities composed of calcified algae, corals, and sediment were combined to match the percentage cover of benthic communities in the shallow back reef of Moorea, French Polynesia. Reef communities in the flumes were exposed to ambient (400 ?atm) and high pCO2 (1300 ?atm) for 8 weeks, and calcification rates measured for the constructed communities including the sediments. Community calcification was reduced by 59% under high pCO2, with sediment dissolution explaining ~ 50% of this decrease; net calcification of corals and calcified algae remained positive but was reduced by 29% under elevated pCO2. These results show that, despite the capacity of coral reef calcifiers to maintain positive net accretion of calcium carbonate under OA conditions, reef communities might transition to net dissolution as pCO2 increases, particularly at night, due to enhanced sediment dissolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains aboveground community biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2003 just prior to mowing (during peak standing biomass in late May and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in four rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains two time series of measurements of dissolved phosphorus (organic, inorganic and total with a biweekly resolution) and dissolved inorganic phosphorus with a seasonal resolution. In addition, data on phosphorus from soil samples measured in 2007 and fractionated by different acid-extrations (Hedley fractions) are provided. All data measured at the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Dissolved phosphorus in soil solution: Suction plates installed on the field site in 10, 20, 30 and 60 cm depth were used to sample soil pore water. Cumulatively extracted soil solution was collected every two weeks from October 2002 to May 2006. The biweekly samples from 2002, 2003 and 2004 were analyzed for dissolved organic phosphorus (DOP), dissolved inorganic phosphorus (PO4P) and dissolved total phosphorus (TDP) by Continuous Flow Analyzer (CFA SAN ++, SKALAR [Breda, The Netherlands]). 2. Seasonal values of dissolved inorganic phosphorus in soil solution were calculated as volume-weighted mean values of the biweekly measurements (spring = March to May, summer = June to August, fall = September to November, winter = December to February). 3. Phosphorus fractions in soil: Five independent soil samples per plot were taken in a depth of 0-15 cm using a soil corer with an inner diameter of 1 cm. The five samples per plot were combined to one composite sample per plot. A four-step sequential P fractionation (Hedley fractions) was applied and concentrations of P fractions in soil were measured photometrically (molybdenum blue-reactive P) with a Continuous Flow Analyzer (Bran&Luebbe, Germany).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains aboveground community plant biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the dominance experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the dominance experiment, 206 grassland plots of 3.5 x 3.5 m were established from a pool of 9 plant species that can be dominant in semi-natural grassland communities of the study region. In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 3, 4, 6, and 9 species). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in May and August 2006 on all experimental plots of the dominance experiment. This was done by clipping the vegetation at 3 cm above ground in two rectangles of 0.2 x 0.5 m per experimental plot. The location of these rectangles was assigned by random selection of coordinates within the central area of the plots (excluding an outer edge of 50cm). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material, and remaining plant material that could not be assigned to any category. All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The mean of both samples per plot and the individual measurements are provided in the data file. Overall, analyses of the community biomass data have identified species richness and the presence of particular species as an important driver of a positive biodiversity-productivity relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains aboveground community plant biomass (Sown plant community, Weed plant community, and Dead plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the dominance experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the dominance experiment, 206 grassland plots of 3.5 x 3.5 m were established from a pool of 9 plant species that can be dominant in semi-natural grassland communities of the study region. In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 3, 4, 6, and 9 species). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in May and August 2003 on all experimental plots of the dominance experiment. This was done by clipping the vegetation at 3 cm above ground in two rectangles of 0.2 x 0.5 m per experimental plot. The location of these rectangles was assigned by random selection of coordinates within the central area of the plots (excluding an outer edge of 50cm). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material, and remaining plant material that could not be assigned to any category. All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The mean of both samples per plot and the individual measurements are provided in the data file. Overall, analyses of the community biomass data have identified species richness and the presence of particular species as an important driver of a positive biodiversity-productivity relationship.