145 resultados para --1494-1556. --Visitation
Resumo:
Expanding visitation to Polar regions combined with climate warming increases the potential for alien species introduction and establishment. We quantified vascular plant propagule pressure associated with different groups of travelers to the high-Arctic archipelago of Svalbard, and evaluated the potential of introduced seeds to germinate under the most favorable average Svalbard soil temperature (10°C). We sampled the footwear of 259 travelers arriving by air to Svalbard during the summer of 2008, recording 1,019 seeds: a mean of 3.9 (±0.8) seeds per traveler. Assuming the seed influx is representative for the whole year, we estimate a yearly seed load of around 270,000 by this vector alone. Seeds of 53 species were identified from 17 families, with Poaceae having both highest diversity and number of seeds. Eight of the families identified are among those most invasive worldwide, while the majority of the species identified were non-native to Svalbard. The number of seeds was highest on footwear that had been used in forested and alpine areas in the 3 months prior to traveling to Svalbard, and increased with the amount of soil affixed to footwear. In total, 26% of the collected seeds germinated under simulated Svalbard conditions. Our results demonstrate high propagule transport through aviation to highly visited cold-climate regions and isolated islands is occurring. Alien species establishment is expected to increase with climate change, particularly in high latitude regions, making the need for regional management considerations a priority.
Resumo:
Over a 2-year study, we investigated the effect of environmental change on the diversity and abundance of soil arthropod communities (Acari and Collembola) in the Maritime Antarctic and the Falkland Islands. Open Top Chambers (OTCs), as used extensively in the framework of the northern boreal International Tundra Experiment (ITEX), were used to increase the temperature in contrasting communities on three islands along a latitudinal temperature gradient, ranging from the Falkland Islands (51°S, mean annual temperature 7.5 °C) to Signy Island (60°S, -2.3°C) and Anchorage Island (67°S, -3.8°C). At each island an open and a closed plant community were studied: lichen vs. moss at the Antarctic sites, and grass vs. dwarf shrub at the Falkland Islands. The OTCs raised the soil surface temperature during most months of the year. During the summer the level of warming achieved was 1.7 °C at the Falkland Islands, 0.7 °C at Signy Island, and 1.1 °C at Anchorage Island. The native arthropod community diversity decreased with increasing latitude. In contrast with this pattern, Collembola abundance in the closed vegetation (dwarf shrub or moss) communities increased by at least an order of magnitude from the Falkland Islands (9.0 +/- 2 x 10**3 ind./m**2) to Signy (3.3 +/- 8.0 x 10**4 ind./m**2) and Anchorage Island (3.1 +/- 0.82 x 10**5 ind./m**2). The abundance of Acari did not show a latitudinal trend. Abundance and diversity of Acari and Collembola were unaffected by the warming treatment on the Falkland Islands and Anchorage Island. However, after two seasons of experimental warming, the total abundance of Collembola decreased (p < 0.05) in the lichen community on Signy Island as a result of the population decline of the isotomid Cryptopygus antarcticus. In the same lichen community there was also a decline (p < 0.05) of the mesostigmatid predatory mite Gamasellus racovitzai, and a significant increase in the total number of Prostigmata. Overall, our data suggest that the consequences of an experimental temperature increase of 1-2°C, comparable to the magnitude currently seen through recent climate change in the Antarctic Peninsula region, on soil arthropod communities in this region may not be similar for each location but is most likely to be small and initially slow to develop.
Resumo:
The following analyses were made some years ago, principally with the object of ascertaining the state of oxidation of the manganese in the nodules. The nodules examined came from three different localities, two of them oceanic and the third littoral. Samples marked I., II., and III. are from nodules brought up in the trawl on board the "Challenger," on 13th March 1874, in lat. 42° 42' S., long. 134° 10' E. The depth of the water was 2600 fathoms, and the temperature of the bottom water 0·2° C. The density of the bottom water was 1·02570 at 15·56° C. Being from a high southern latitude, and therefore near the source of surface aeration, the water is highly charged with atmospheric gases, especially oxygen. It contained, per litre, 18·4 c.c. of mixed nitrogen and oxygen, of which 31·81 per cent, was oxygen, and 27·33 c.c, or 53·7 milligrammes, loosely-bound carbonic acid. The position of the station is about 400 miles south-west of the nearest part of the Australian coast, and about 500 miles west of Tasmania. It was the deepest water observed in the Antarctic voyage between the Cape of Good Hope and Melbourne. The haul was a very abundant one, and a few notes which I made at the time may be interesting: -"The water was found unexpectedly deep, the bottom being red clay, with some Foraminifera.