30 resultados para ¹H and 13C-NMR
Resumo:
Fatty acid and alcohol profiles and stable nitrogen and carbon isotope values, d15N and d13C, of Calanus finmarchicus CV were studied in June 2004 to estimate their trophic status along the northern Mid-Atlantic Ridge i.e. the Reykjanes Ridge (RR), extending from Iceland in the north to the productive region of the Sub-Polar Front (SPF) in the south. Two main groups of stations were defined in the study area based on fatty acid (FA) and fatty alcohol compositions, the stations in the RR area constituted one group and the stations in the frontal area constituted another. The sum of relative amounts of the dietary FAs was significantly higher in the RR area than in the frontal area. Conversely, the long-chained FAs, 20:1 and 22:1, were found in significantly lower relative amounts in the RR area than in the frontal area, thus indicating later ascent of the animals in the frontal area. Further support of this is provided by the fatty alcohols ratio 20:1/22:1 which differed significantly between the two areas. The d15N values were significantly higher in the frontal area compared to the RR area indicating higher trophic position and/or different pelagic-POM baseline in these areas.
Resumo:
Potassium permanganate oxidative degradations were conducted for kerogens isolated from Cretaceous black shales (DSDP Leg 41, Site 368), thermally altered during the Miocene by diabase intrusions and from unaltered samples heated under laboratory conditions (250-500°C). Degradation products of less altered kerogens are dominated by normal C4-C15 alpha,omega-dicarboxylic acids, with lesser amounts of n-C16 and n-C18 monocarboxylic acids, and benzene mono-to-tetracarboxylic acids. On the other hand, thermally altered kerogens show benzene di-to-tetracarboxylic acids as dominant degradation products, with lesser or no amounts (variable depending on the degree of thermal alteration) of alpha,omega-dicarboxylic acids. Essentially no differences between the oxidative degradation products of naturally- and artificially-altered kerogens are observed. As a result of this study, five indices of aromatization (total aromatic acids/kerogen; apparent aromaticity; benzenetetracarboxylic acids/total aromatic acids; benzene-1,2-dicarboxylic acid/benzenedicarboxylic acids; benzene-1,2,3-tricarboxylic acid/benzenetricarboxylic acids) and two indices of aliphatic character (Total aliphatic acids/kerogen; Aliphaticity) are proposed to characterize the degree of thermal alteration of kerogens. Furthermore, a good correlation is observed between apparent aromaticity estimated by the present KMnO4 oxidation method and that from the 13C NMR method (Dennis et al., 1982; doi:10.1016/0016-7037(82)90046-1).
Resumo:
Most authigenic carbonates previously recovered from the Cascadia slope have 87Sr/86Sr signatures that reflect shallow precipitation in equilibrium with coeval seawater. There is also evidence for carbonate formation supported by fluids that have been modified by reactions with the incoming Juan de Fuca plate (87Sr/86Sr = 0.7071; Teichert et al., 2005, doi:10.1016/j.epsl.2005.08.002) or with terrigenous turbidites (87Sr/86Sr = 0.70975 to 0.71279; Sample et al., 1993, doi:10.1130/0091-7613(1993)021<0507:CCICFF>2.3.CO;2). We report on the strontium isotopic composition of carbonates and fluids from IODP Site U1329 and nearby Barkley Canyon (offshore Vancouver Island), which have strontium isotope ratios as low as 0.70539. Whereas the strontium and oxygen isotopic compositions of carbonates from paleoseeps in the uplifted Coast Range forearc indicate formation in ambient bottom seawater, several samples from the Pysht/Sooke Fm. show a 87Sr-depleted signal (87Sr/86Sr = 0.70494 and 0.70511) similar to that of the anomalous Site U1329 and Barkley Canyon carbonates. Our data, when analyzed in the context of published elemental and isotopic composition of these carbonates (Joseph et al., 2012, doi:10.1016/j.palaeo.2013.01.012 ), point to two formation mechanisms: 1) shallow precipitation driven by the anaerobic oxidation of methane (AOM) with d13C values as low as -50 per mil and contemporaneous 87Sr/86Sr seawater ratios, and 2) carbonate precipitation driven by fluids that have circulated through the oceanic crust, which are depleted in 87Sr. Carbonates formed from the second mechanism precipitate both at depth and at sites of deep-sourced fluid seepage on the seafloor. The 87Sr-depleted carbonates and pore fluids found at Barkley Canyon represent migration of a deep, exotic fluid similar to that found in high permeability conglomerate layers at 188 mbsf of Site U1329, and which may have fed paleoseeps in the Pysht/Sooke Fm. These exotic fluids likely reflect interaction with the 52-57 Ma igneous Crescent Terrane, which supplies fluids with high calcium, manganese and strontium enriched in the non-radiogenic nucleide. Tectonic compression and dehydration reactions then force these fluids updip, where they pick up the thermogenic hydrocarbons and 13C-enriched dissolved inorganic carbon that are manifested in fluids and carbonates sampled at Barkley Canyon and at Site U1329. The Crescent Terrane may have sourced cold seeps in this margin since at least the late Oligocene.
Resumo:
Under present climate conditions, convection at high latitudes of the North Pacific is restricted to shallower depths than in the North Atlantic. To what extent this asymmetry between the two ocean basins was maintained over the past 20 kyr is poorly known because there are few unambiguous proxy records of ventilation from the North Pacific. We present new data for two sediment cores from the California margin at 800 and 1600 m depth to argue that the depth of ventilation shifted repeatedly in the northeast Pacific over the course of deglaciation. The evidence includes benthic foraminiferal Cd/Ca, 18O/16O, and 13C/12C data as well as radiocarbon age differences between benthic and planktonic foraminifera. A number of features in the shallower of the two cores, including an interval of laminated sediments, are consistent with changes in ventilation over the past 20 kyr suggested by alternations between laminated and bioturbated sediments in the Santa Barbara Basin and the Gulf of California [Keigwin and Jones, 1990 doi:10.1029/PA005i006p01009; Kennett and Ingram, 1995 doi:10.1038/377510a0; Behl and Kennett, 1996 doi:10.1038/379243a0]. Data from the deeper of the two California margin cores suggest that during times of reduced ventilation at 800 m, ventilation was enhanced at 1600 m depth, and vice versa. This pronounced depth dependence of ventilation needs to be taken into account when exploring potential teleconnections between the North Pacific and the North Atlantic.
Resumo:
We present a 15 kyr sea surface temperature (SST) record for a high sedimentation rate core (KNR51-29GGC) from the Feni Drift off of Ireland, based on an organic geochemical technique for paleotemperature estimation, U37 K'. We compare the U37 K' temperature record to planktonic foraminiferal delta18O and foraminiferal assemblage SST estimates from the same sample horizons. U37 K' gives SST estimates of 13°C for the early deglacial and 18°C for the Holocene and Recent, whereas assemblages give estimates of 9°C and 13°C, respectively. As in nearby core V23-81, we find Ash Zone 1, the Younger Dryas increase in Neogloboquadrina pachyderma sinistral abundance, and maximum abundance of this species during glaciation. N. pachyderma dextral oxygen isotopic analyses have a late glacial to interglacial range of 1.5 per mil. A reduction of about 1 per mil in delta18O occurred at about 12 ka, whereas U37 K' and the foraminiferal fauna indicate a 2°C warming. This implies a 0.9 per mil salinity effect on delta18O which we attribute to meltwater freshening. All three parameters indicate cooling during the Younger Dryas. U37 K' SST estimates show that the major shift from deglacial to interglacial temperatures occurred after the Younger Dryas in termination 1b, in contrast to the assemblage data, which show this jump in SST at the end of the glaciation during termination Ia. Differences between the two SST estimators, which may result from their different (floral versus faunal) sources, are more pronounced between transitions Ia and Ib. This may reflect different habitats under the unusual sea surface conditions of the deglaciation.
Resumo:
The primary aim of the this investigation was to examine the stability of subtropical sea-surface temperatures and reconstruct the surface-to-benthos thermal gradient. High-resolution stable isotopic analyses (18O and 13C) were conducted on late middle Eocene planktonic and benthic foraminifers recovered from Hole 1051B, Blake Nose, western North Atlantic. The sequence comprises a siliceous nannofossil and foraminifer ooze, with well-preserved calcareous microfossils. Isotopic examination was conducted on the mixed-layer dweller Morozovella spinulosa and the benthic foraminifer Nuttalides truempyi at this subtropical site.
Resumo:
The carbon isotope ratio (delta13C) and cadmium content (Cd/Ca) of benthic foraminifera shells have been used to reconstruct deep-water circulation patterns of the glacial oceans. These tracers co-vary with phosphorus in the modern ocean because they are nearly quantitatively regenerated from sinking biological debris in the upper water column. Hence they can be used to reconstruct the distribution of labile nutrients in glacial water masses. Independent constraints on glacial deep-ocean circulation patterns could be provided by a tracer of the distribution of silica and alkalinity, the deeply regenerated constituents of planktonic hard parts. Barium shares key aspects of its behaviour with these refractory nutrients because it is removed from solution in surface waters and incorporated into sinking particles which slowly dissolve deep in the water column and in the sediments. The fractionation of Ba between deep-water masses of the major ocean basins is largely controlled by thermohaline circulation patterns, so Ba conforms to different boundary conditions from Cd and 13C. As Ba substitutes into trigonal carbonates, it is a potential palaeoceano-graphic tracer if the Ba content of foraminifera shells reflects ambient dissolved Ba concentrations. Here we present data from Recent core-top benthic foraminifera which indicate that the Ba content of some recent calcitic benthic foraminifera does co-vary with bottom-water Ba.
Resumo:
A stable isotope (13C)-labeling experiment was performed to quantify the importance of bacterial carbon as a food source for an Arctic deep-sea nematode community. Bacterial functional groups were isotopically enriched with 13C-glucose, 13C-acetate, 13C- bicarbonate, and 13C-amino acids injected into sediments collected from 1280 m depth at 79uN, 6uE, west of Svalbard. Incorporation of the 13C label into bacterial phospholipid-derived fatty acids (PLFAs) and nematodes in the top 5 cm of the sediment was monitored over a 7-d period. The 13C dynamics of nematodes was fitted with a simple isotope turnover model to derive the importance of the different bacterial functional groups as carbon sources for the nematodes. The different substrates clearly labeled different bacterial groups as evidenced by differential labeling of the PLFA patterns. The deep-sea nematode community incorporated a very limited amount of the label, and the isotope turnover model showed that the dynamics of the isotope transfer could not be attributed to bacterivory. The low enrichment of nematodes suggests a limited passive uptake of injected 13C-labeled substrates. The lack of accumulation suggests that the injected 13C-labeled dissolved organic carbon compounds are not important as carbon sources for deep-sea nematodes. Since earlier studies with isotopically enriched algae also found limited uptake by nematodes, the food sources of deep-sea nematodes remain unclear.