593 resultados para trace elements in minerals
Resumo:
New Mg/Ca, Sr/Ca, and published stable oxygen isotope and 87Sr/86Sr data obtained on ostracods from gravity cores located on the northwestern Black Sea slope were used to infer changes in the Black Sea hydrology and water chemistry for the period between 30 to 8 ka B.P. (calibrated radiocarbon years). The period prior to 16.5 ka B.P. was characterized by stable conditions in all records until a distinct drop in d18O values combined with a sharp increase in 87Sr/86Sr occurred between 16.5 and 14.8 ka B.P. This event is attributed to an increased runoff from the northern drainage area of the Black Sea between Heinrich Event 1 and the onset of the Bølling warm period. While the Mg/Ca and Sr/Ca records remained rather unaffected by this inflow; they show an abrupt rise with the onset of the Bølling/Allerød warm period. This rise was caused by calcite precipitation in the surface water, which led to a sudden increase of the Sr/Ca and Mg/Ca ratios of the Black Sea water. The stable oxygen isotopes also start to increase around 15 ka B.P., although in a more gradual manner, due to isotopically enriched meteoric precipitation. While Sr/Ca remains constant during the following interval of the Younger Dryas cold period, a decrease in the Mg/Ca ratio implies that the intermediate water masses of the Black Sea temporarily cooled by 1-2°C during the Younger Dryas. The 87Sr/86Sr values drop after the cessation of the water inflow at 15 ka B.P. to a lower level until the Younger Dryas, where they reach values similar to those observed during the Last Glacial Maximum. This might point to a potential outflow to the Mediterranean Sea via the Sea of Marmara during this period. The inflow of Mediterranean water started around 9.3 ka B.P., which is clearly detectable in the abruptly increasing Mg/Ca, Sr/Ca, and 87Sr/86Sr values. The accompanying increase in the d18O record is less pronounced and would fit to an inflow lasting ~100 a.
Resumo:
Bioaccumulation of trace metals in carbonate shells of mussels and clams was investigated at seven hydrothermal vent fields of the Mid-Atlantic Ridge (Menez Gwen, Snake Pit, Rainbow, and Broken Spur) and the Eastern Pacific (9°N and 21°N at the East Pacific Rise and the southern trough of Guaymas Basin, Gulf of California). Mineralogical analysis showed that carbonate skeletons of mytilid mussel Bathymodiolus sp. and vesicomyid clam Calyptogena m. are composed mainly of calcite and aragonite, respectively. The first data were obtained for contents of a variety of chemical elements in bivalve carbonate shells from various hydrothermal vent sites. Analyses of chemical compositions (including Fe, Mn, Zn, Cu, Cd, Pb, Ag, Ni, Cr, Co, As, Se, Sb, and Hg) of 35 shell samples and 14 water samples from mollusk biotopes revealed influences of environmental conditions and some biological parameters on bioaccumulation of metals. Bivalve shells from hydrothermal fields with black smokers are enriched in Fe and Mn by factor of 20-30 relative to the same species from the Menez Gwen low-temperature vent site. It was shown that essential elements (Fe, Mn, Ni, and Cu) more actively accumulated during early ontogeny of the shells. High enrichment factors of most metals (n x 100 - n x 10000) indicate efficient accumulation function of bivalve carbonate shells. Passive metal accumulation owing to adsorption on shell surfaces was estimated to be no higher than 50% of total amount and varied from 14% for Fe to 46% for Mn.
Resumo:
d11B and trace results obtained for a deep sea coral specimen Madrepora oculata collected from the Norwegian Sea (67°N, 9°E, 340 m) during the RV Polarstern ARK/II/Ia cruise (2007). Such coral specimen grew during the last four decades (1968-2007) and geochemical results highligh a seawater pH decrease with an order of magnitude in good agreement with an ocean acidification rate today known. This pH record is strongly impacted by inter-decadal change of ocean dynamic (NAO) and productivity. pHT calculation parameters (Hönisch et al., 2007): a=5; a=0.9804, d11B=39.5 PER MIL, Li/Mg temperature, salinity=35.1, pKB from Dickson (1990).
Resumo:
Selected basalts from a suite of dredged and drilled samples (IPOD sites 525, 527, 528 and 530) from the Walvis Ridge have been analysed to determine their rare earth element (REE) contents in order to investigate the origin and evolution of this major structural feature in the South Atlantic Ocean. All of the samples show a high degree of light rare earth element (LREE) enrichment, quite unlike the flat or depleted patterns normally observed for normal mid-ocean ridge basalts (MORBs). Basalts from Sites 527, 528 and 530 show REE patterns characterised by an arcuate shape and relatively low (Ce/Yb)N ratios (1.46-5.22), and the ratios show a positive linear relationship to Nb content. A different trend is exhibited by the dredged basalts and the basalts from Site 525, and their REE patterns have a fairly constant slope, and higher (Ce/Yb)N ratios (4.31-8.50). These differences are further reflected in the ratios of incompatible trace elements, which also indicate considerable variations within the groups. Mixing hyperbolae for these ratios suggest that simple magma mixing between a 'hot spot' type of magma, similar to present-day volcanics of Tristan da Cunha, and a depleted source, possibly similar to that for magmas being erupted at the Mid-Atlantic Ridge, was an important process in the origin of parts of the Walvis Ridge, as exemplified by Sites 527, 528 and 530. Site 525 and dredged basalts cannot be explained by this mixing process, and their incompatible element ratios suggest either a mantle source of a different composition or some complexity to the mixing process. In addition, the occurrence of different types of basalt at the same location suggests there is vertical zonation within the volcanic pile, with the later erupted basalts becoming more alkaline arid more enriched in incompatible elements. The model proposed for the origin and evolution of the Walvis Ridge involves an initial stage of eruption in which the magma was essentially a mixture of enriched and depleted end-member sources, with the N-MORB component being small. The dredged basalts and Site 525, which represent either later-stage eruptives or those close to the hot spot plume, probably result from mixing of the enriched mantle source with variable amounts and variable low degrees of partial melting of the depleted mantle source. As the volcano leaves the hot spot, these late-stage eruptives continue for some time. The change from tholeiitic to alkalic volcanism is probably related either to evolution in the plumbing system and magma chamber of the individual volcano, or to changes in the depth of origin of the enriched mantle source melt, similar to processes in Hawaiian volcanoes.
Resumo:
We studied the diagenetic behavior of rare earth elements (REEs) in a highly productive passive margin setting of the Bering Sea Slope. Site U1345 was drilled during the Integrated Ocean Drilling Program Expedition 323 at a water depth of 1008 m currently in the center of an oxygen minimum zone. Pore water concentrations of fourteen REEs were determined down to ~ 140 meters below the seafloor (mbsf). The REE concentrations were higher in the pore water than the deep seawater, indicating that there was significant liberation from the sediments during diagenesis. There was a major peak at ~ 10 mbsf that was more pronounced for the heavy REE (HREE); this peak occurred below the sulfate-methane transition zone (6.3 mbsf) and coincided with high concentrations of dissolved iron and manganese. At ~ 2 mbsf, there was a minor peak in REE and Mn contents. Below ~ 40 mbsf, the REE concentration profiles remained constant. The Ce anomaly was insignificant and relatively constant (PAAS-normalized Ce/Ce = 1.1 ± 0.2) throughout the depth profile, showing that the Ce depleted in seawater was restored in the pore water. HREE-enrichment was observed over the entire 140 m except for the upper ~ 1 m, where a middle REE (MREE)-bulge was apparent. REE release in shallow depths (2-4 mbsf) is attributed to the release of light REEs (LREEs) and MREEs during the organoclastic reduction of Mn oxides in anoxic sediments. The high HREE concentrations observed at ~ 10 mbsf can be attributed to the reduction of Fe and Mn minerals tied to anaerobic oxidation of methane or, less significantly, to ferromagnesian silicate mineral weathering. The upward diffusion flux across the sediment-water interface was between 3 (for Tm) and 290 (for Ce) pmol/m**2/y.
Resumo:
The Sr, Rb, Ti, and Zr concentrations of 16 volcanic ash samples from Leg 19 of the Deep Sea Drilling Project were determined by X-ray fluorescence. The age of each ash sample had been established previously by faunal criteria and had been confirmed by fission-track dating. Variations in the trace-element concentrations through the past 8 m.y. are clearly seen. Seven of the ashes are older than 4 m.y., have low TiO2 contents, and have Sr concentrations of less than 200 ppm; they are thus similar to tholeiitic basalts of island arcs. Nine ashes are younger than 4 m.y. and are similar in trace-element content to andesite. Magmatic evolution of the Aleutian arc over the past 8 m.y. is clearly shown.
Resumo:
Talus deposits recovered from Site 536 show evidence of aragonite dissolution, secondary porosity development, and calcite cementation. Although freshwater diagenesis could account for the petrographic features of the altered talus deposits, it does not uniquely account for isotopic or trace-element characteristics. Also, the hydrologic setting required for freshwater alteration is not easily demonstrated for the Campeche Bank. A mixing-zone model does not account for the available trace-element data, but does require somewhat less drastic assumptions about the size of the freshwater lens. Although a seawater (bottom-water) alteration model requires no hydrologic difficulties, unusual circumstances are required to account for the geochemical characteristics of the talus deposits using this model.
Resumo:
The basalts recovered from the Costa Rica Rift by drilling at Deep Sea Drilling Project Sites 501, 504, and 505 during Legs 68, 69 and 70 of the Glomar Challenger are the most depleted in the most-hygromagmaphile elements (Th, Ta, Nb, and La) of all MORB recovered to date by the Glomar Challenger. The invariant ratios Nb/Ta, Zr/Hf, and Y/Tb show "chondritic values" (expected for Nb/Ta because of the very low concentrations in these elements). Four samples from a single unit are exceptions: they present a flat to slightly enriched, extended Coryell-Masuda plot, and at the same time their La/Ta ratio is 9 (normalized ratio = 1) instead of 19 (normalized ratio = 2), the value for all other samples. Only one of these two values of the La/Ta ratio had been found so far within a single hole, and moreover within large areas of the oceanic crust (several holes or dredges). The present result shows that local heterogeneity of the upper mantle with respect to the La/Ta ratio may exist.