381 resultados para sediment source
Resumo:
The Kap Mackenzie area on the outer coast of northeast Greenland was glaciated during the last glacial stage, and pre-Holocene shell material was brought to the area. Dating of marine shells indicates that deglaciation occurred in the earliest Holocene, before 10 800 cal. a BP. The marine limit is around 53 m a.s.l. In the wake of the deglaciation, a glaciomarine fauna characterized the area, but after c. one millennium a more species-rich marine fauna took over. This fauna included Mytilus edulis and Mysella sovaliki, which do not live in the region at present; the latter is new to the Holocene fauna of northeast Greenland. The oldest M. edulis sample is dated to c. 9500 cal. a BP, which is the earliest date for the species from the region and indicates that the Holocene thermal maximum began earlier in the region than previously documented. This is supported by driftwood dated to c. 9650 cal. a BP, which is the earliest driftwood date so far from northeastern Greenland and implies that the coastal area was at least partly free of sea ice in summer. As indicated by former studies, the Storegga tsunami hit the Kap Mackenzie area at c. 8100 cal. a BP. Loon Lake, at 18 m a.s.l., was isolated from the sea at c. 6200 cal. a BP, which is distinctly later than expected from existing relative sea-level curves for the region.
Resumo:
The South American summer monsoon (SASM) is the main source of precipitation for the most densely populated and agriculturally productive regions of tropical and subtropical South America. Here we investigate the impact of the Atlantic Multidecadal Oscillation (AMO) on the SASM using ~4500 yr long proxy records of the discharge variability of the La Plata River Drainage Basin (PRDB), subtropical South America. We measured the stable oxygen composition of planktic foraminifera (related to the extension of the PRDB plume), and Ti intensity in bulk sediment (related to the source of the terrigenous sediments) from a marine sediment core. Spectral and wavelet analyses of our records indicate an oscillation with period of ~64 yr. We conclude that the observed oscillation reflects variability in the SASM activity associated to the AMO. Sea surface temperature and atmospheric circulation anomalies triggered by the AMO would control the variability in SASM activity.
Resumo:
At the end of the Last Glacial Maximum (19,000 to 11,000 years ago), atmospheric carbon dioxide concentrations rose while the Delta14C of atmospheric carbon dioxide declined**1, 2. These changes have been attributed to an injection of carbon dioxide with low radiocarbon activity from an oceanic abyssal reservoir that was isolated from the atmosphere for several thousand years before deglaciation**3. The current understanding points to the Southern Ocean as the main area of exchange between these reservoirs4. Intermediate water formed in the Southern Ocean surrounding Antarctica would have then carried the old carbon dioxide signature to the lower-latitude oceans**5, 6. Here we reconstruct the Delta14C signature of Antarctic Intermediate Water off the coast of Chile for the past 20,000 years, using paired 14C ages of benthic and planktonic foraminifera. In contrast to the above scenario, we find that the delta14C signature of the Antarctic Intermediate Water closely matches the modelled surface ocean Delta14C, precluding the influence of an old carbon source. We suggest that if the abyssal ocean is indeed the source of the radiocarbon-depleted carbon dioxide, an alternative path for the mixing and propagation of its carbon dioxide may be required to explain the observed changes in atmospheric carbon dioxide concentration and radiocarbon activity.
Resumo:
Sortable silt mean grain sizes together with oxygen and carbon isotopic data produced on the benthic foraminiferal species Fontbotia wuellerstorfi are used to construct high-resolution records of near-bottom flow vigour and deep water ventilation at a core site MD02-2589 located at 2660 m water depth on the southern Agulhas Plateau. The results suggest that during glacial periods (marine oxygen isotope stages 2 and 6, MIS 2 and MIS 6, respectively), there was a persistent contribution of a well-ventilated water mass within the Atlantic to Indian oceanic gateway with a d13C signature similar to present-day Northern Component Water (NCW), e.g., North Atlantic Deep Water (NADW). The records of chemical ventilation and near-bottom flow vigor reflect changes in the advection of northern source waters and meridional variability in the location of the Antarctic Circumpolar Current and its associated fronts. We suggest that during Termination II (TII), changes in chemical ventilation are largely decoupled from near-bottom physical flow speeds. A mid-TII climate optimum is associated with a low-flow speed plateau concurrent with a period of increased ventilation shown in the benthic d13C of other Southern Ocean records but not in our benthic d13C of MD02-2589. The climate optimum is followed by a period of southern cooling around 128 ka coincident with a stronger influence of NCW to interglacial levels at around 124 ka. All proxy records show a near synchronous and rapid shift during the transition from MIS 5a-4 (73 ka). This large event is attributed to a rapid decrease in NADW influence and replacement over the Agulhas Plateau by southern source waters.
Resumo:
Millennial-scale variability in the behavior of North Pacific Intermediate Water during the last glacial and deglacial period, and its association with Dansgaard-Oeschger (D-O) cycles and Heinrich events, are examined based on benthic foraminiferal oxygen and carbon isotopes (d18Obf and d13Cbf) and %CaCO3 using a sediment core recovered from the northeastern slope of the Bering Sea. A suite of positive d18Obf excursions at intermediate depths of the Bering Sea, which seem at least in part associated with increases in the d18Obf gradients between the Bering and Okhotsk Seas, suggest the Bering Sea as a proximate source of intermediate water during several severe stadial episodes in the last glacial and deglacial period. Absence of such d18Obf gradients during periods of high surface productivity in the Bering and Okhotsk Seas, which we correlate to D-O interstadials, suggests a reduction in intermediate water production in the Bering Sea and subsequent introduction of nutrient-rich deep waters from the North Pacific into intermediate depths of the Bering Sea. We argue that a reorganization of atmospheric circulation in the high-latitude North Pacific during severe cold episodes in the last glacial and deglacial period created favorable conditions for brine rejection in the northeastern Bering Sea. The resulting salinity increase in the cold surface waters could have initiated intermediate (and deep) water formation that spread out to the North Pacific.
Resumo:
The mineralogy of the lower Oligocene to Quaternary sediments of core CRP-2/2A drilled on the continental shelf of McMurdo Sound in Ross Sea, Antarctica, was examined by the X-ray diffraction method. Quartz, plagioclase feldspar and K-feldspar are the most important non-clay minerals. Pyroxene and amphibole occur in minor amounts throughout the core. The composition of the sediments points to an origin in the Transantarctic Mountains for the majority of the detrital components. There, the plutonic and metamorphic rocks of the basement, the sediments of the Beacon Supergroup and the volcanic rocks of the Ferrar Group could serve as possible source lithologies. The distribution of the detrital minerals reflects a long-term history of successive erosion and valley incision. During the deposition of the lower part of the core, the detrital minerals were probably mainly derived from the sediments of the Beacon Supergroup, as indicated by the high quartz but relatively low feldspar abundances. In the upper c. 350 m of the core, the influence of a source in the basement became stronger and results in lower quartz contents but increasing abundance of feldspar. Some diagenetic alteration of the sediments is indicated by the occurrence of zeolites below c. 320 mbsf and of opal-CT above c. 320 mbsf.