272 resultados para photosynthesis*


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of quantitative characteristics: phytoplankton photosynthesis (Ph), bacterial assimilation of CO2 (BA), total abundance of bacteria (TAB) and organic matter destruction (D) was carried out in waters the Tugur Bay (tidal level fluctuations up to 7 m) in July-August 1990. Calculations were made of integral indices in some parts: Ph -10-630, BA - 8-29, D - 280-1015 and of total primary production (TPP) - 18-652 mg C/(m2 day). According to obtained data and TAB the ecosystem of the Tugur Bay can be regarded as oligotrophic-mesotrophic one. Dependence on spatial and temporal inhomogeneity of primary productional processes on tide-ebb cycles was found. The role of bacterial relations in the ecosystem of the bay was shown. Portion of ?A in TPP varied from 4 to 44% reaching the maximum in desalinated water during the tide-ebb.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In boreal bogs plant species are low in number, but they differ greatly in their growth forms and photosynthetic properties. We assessed how ecosystem carbon (C) sink dynamics were affected by seasonal variations in photosynthetic rate and leaf area of different species. Photosynthetic properties (light-response parameters), leaf area development and areal cover (abundance) of the species were used to quantify species-specific net and gross photosynthesis rates (PN and PG, respectively), which were summed to express ecosystem-level PN and PG. The ecosystem-level PG was compared with a gross primary production (GPP) estimate derived from eddy covariance measurements (EC). Species areal cover rather than differences in photosynthetic properties determined the species with the highest PG of both vascular plants and Sphagna. Species-specific contributions to the ecosystem PG varied over the growing season, which in turn determined the seasonal variation in ecosystem PG. The upscaled growing-season PG estimate, 230 g C/m**2, agreed well with the GPP estimated by the EC, 243 g C/m**2. Sphagna were superior to vascular plants in ecosystem-level PG throughout the growing season but had a lower PN. PN results indicated that areal cover of the species together with their differences in photosynthetic parameters shape the ecosystem-level C balance. Species with low areal cover but high photosynthetic efficiency appear to be potentially important for the ecosystem C sink. Results imply that functional diversity may increase the stability of C sink of boreal bogs.