743 resultados para Silicate minerals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid-sulfate alteration of basalt by SO2-bearing volcanic vapors has been proposed as one possible origin for sulfate-rich deposits on Mars. To better define mineralogical signatures of acid-sulfate alteration, laboratory experiments were performed to investigate alteration pathways and geochemical processes during reaction of basalt with sulfuric acid. Pyroclastic cinders composed of phenocrysts including plagioclase, olivine, and augite embedded in glass were reacted with sulfuric acid at 145 °C for up to 137 days at a range of fluid : rock ratios. During the experiments, the phenocrysts reacted rapidly to form secondary products, while the glass was unreactive. Major products included amorphous silica, anhydrite, and Fe-rich natroalunite, along with minor iron oxides/oxyhydroxides (probably hematite) and trace levels of other sulfates. At the lowest fluid : rock ratio, hexahydrite and an unidentified Fe-silicate phase also occurred as major products. Reaction-path models indicated that formation of the products required both slow dissolution of glass and kinetic inhibitions to precipitation of a number of minerals including phyllosilicates and other aluminosilicates as well as Al- and Fe-oxides/oxyhydroxides. Similar models performed for Martian basalt compositions predict that the initial stages of acid-sulfate alteration of pyroclastic deposits on Mars should result in formation of amorphous silica, anhydrite, Fe-bearing natroalunite, and kieserite, along with relict basaltic glass. In addition, analysis of the experimental products indicates that Fe-bearing natroalunite produces a Mössbauer spectrum closely resembling that of jarosite, suggesting that it should be considered an alternative to the component in sulfate-rich bedrocks at Meridiani Planum that has previously been identified as jarosite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents characteristics of the Nd and Sr isotopic systems of ultrabasic rocks, gabbroids, plagiogranites, and their minerals as well as data on helium and hydrocarbons in fluid inclusions of the same samples. Materials presented in this publication were obtained by studying samples dredged from the MAR crest zone at 5°-6°N (U/Pb zircon dating, geochemical and petrological-mineralogical studies). It was demonstrated that variations in the isotopic composition of He entrapped in rocks and minerals were controlled by variable degrees of mixing of juvenile He, which is typical of basaltic glass for MAR (DM source), and atmospheric He. Increase in the atmospheric He fraction in plutonic rocks and, to a lesser degree, in their minerals reflects involvement of seawater or hydrated material of the oceanic crust in magmatic and postmagmatic processes. This conclusion finds further support in positive correlation between the fraction of mantle He (R ratio) and 87Sr/86Sr ratio. High-temperature hydration of ultrabasic rocks (amphibolization) was associated with increase in the fraction of mantle He, while their low-temperature hydration (serpentinization) was accompanied by drastic decrease in this fraction and significant increase in 87Sr/86Sr ratio. Insignificant variations in 143Nd/144Nd (close to 0.5130) and 87Sr/86Sr (0.7035) in most of gabbroids and plagiogranites as well as the fraction of mantle He in these rocks, amphibolites, and their ore minerals indicate that the melts were derived from the depleted mantle. Similar e-Nd values of gabbroids, plagiogranites, and fresh harzburgites (6.77-8.39) suggest that these rocks were genetically related to a single mantle source. e-Nd value of serpentinized lherzolites (2.62) likely reflects relations of these relatively weakly depleted mantle residues to another source. Aforementioned characteristics of the rocks generally reflect various degrees of mixing of depleted mantle components with crustal components (seawater) during metamorphic and hydrothermal processes that accompanied formation of the oceanic crust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basement cored at Site 1201 (west Philippine Basin) during Ocean Drilling Program Leg 195 consists of a 91-m-thick sequence of basalts, mostly pillow lavas and perhaps one sheet lava flow, with a few intercalations of hyaloclastite and interpillow sedimentary material. Hydrothermal alteration pervasively affected the basalt sequence, giving rise to a variety of secondary minerals such as K-Fe-Mg-clay minerals, oxyhydroxides and clay minerals mixtures, natrolite group zeolites, analcite, alkali feldspar, and carbonate. The primary minerals of pillow and sheet basalts that survived the intense hydrothermal alteration were investigated by electron microprobe with the aim of characterizing their chemical composition and variability. The primary minerals are mostly plagioclase, ranging in composition from bytownite through labradorite to andesine, chromian-magnesian-diopside, and spinels, both Ti magnetite (partially maghemitized) and chromian spinel. Overall, the chemical features of the primary minerals of Site 1201 basalts correspond to the primitive character of the bulk rocks, suggesting that the parent magma of these basalts was a mafic tholeiitic magma that most likely only suffered limited fractional crystallization and crystallized at high temperatures (slightly below 1200°C) and under increasing fO2 conditions. The major element composition of clinopyroxene suggests a backarc affinity of the mantle source of Site 1201 basement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of seawater with basalts in DSDP Hole 501 and the upper part of Hole 504B (Costa Rica Rift) produced oxidative alteration and a zonation of clay minerals along cracks. From rock edges to interiors in many cracks the following succession occurs, based on microscopic observations and microprobe analysis: iron hydroxides (red), "protoceladonite" (green), iddingsite (orange), and saponite (yellow). Clay minerals replace olivines and fill vesicles and cracks. Other secondary minerals are phillipsite, aragonite, and unidentified carbonates. Some glass is transformed to Mg-rich palagonite. Bulk rock chemistry is related to the composition of the secondary minerals. The zonation can be interpreted as a succession of postburial nonoxidative and oxidative diagenesis similar to that described in the Leg 34 basalts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two basement holes were drilled during Ocean Drilling Program (ODP) Leg 206. Hole 1256C penetrates 88.5 m into basement and Hole 1256D, ~30 m to the south, penetrates 502 m into basement (Wilson, Teagle, Acton, et al., 2003, doi:10.2973/odp.proc.ir.206.2003). Recovered cores consist of basalts exhibiting the effects of low-temperature alteration by seawater. As part of a larger study of alteration effects, a study of the secondary mineralogy was undertaken. This data report presents the major and some minor element compositions of secondary minerals. Analyses focus on the major secondary phases, phyllosilicates, and less abundant feldspars, but also include limited analyses of carbonates and apatite. Different occurrences of secondary minerals are included (e.g., veins and vesicles replacing olivine and plagioclase) as well as variations with depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The northwestern Cascadia Basin of western North America accumulated high-sedimentation-rate sequences during the Pleistocene sea-level low-stands. The continental shelf was largely exposed at that time, and rivers and estuaries delivered large sediment fluxes directly to the deep ocean. The IODP EXP1301 core, which was taken from the middle portion of the Cascadia Basin, is well preserved and exhibits the deeper and - more distal sedimentary facies. The lithology in this location is composed of two units, 1) hemipelagic mud with a thin sand layer and 2) thick, coarsening upward silt-sand turbidites with a small proportion of granules at the top. We will focus on the detailed sand-grain proportions in order to understand the origin of these sediments. We determined the modal proportions of the heavy minerals, and the chemical composition of olivine and orthopyroxene in fourteen samples. These are characterized by an abundance of amphibole, pyroxenes and epidote, and the presence of minerals derived from peridotite. There is no drastic change in the modal and mineral compositions of the sands and silts between the turbidite and hemipelagic sequences. There were two probable drainage systems on the continent, the Frazer and Columbia rivers, which shed turbidites into the Cascadia Basin after 1.6 Ma, especially at 0.46-0.76 Ma. Based on a comparison of the modal and mineral compositions, the Northern Cascadia Basin has been supplied with sediments, mainly from the Frazer River, through the Straits of Juan de Fuca, by Pleistocene to Holocene turbidites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of secondary minerals, formed in response to different oxidation and hydration states, are found in vugs and on fracture surfaces of the basalt cores from DSDP Leg 54. The minerals are smectite (blue to grey), high-magnesium calcite, manganoan calcite, aragonite, iron oxides, phillipsite, todorokite, marcasite, and hydrobiotite. The relationship of the mineral assemblages to four depositional modes of the basalts are delineated. A definite sequence and genetic link exists between mineral type and host rock which is dependent upon the origin and subsequent cooling history of the basalt.