465 resultados para Plio-Pleistocene
Resumo:
Late Pleistocene intermediate water ventilation history in the northeastern Pacific has been inferred from benthic foraminiferal carbon isotopic data from seven California margin basins. Secular variations in oceanic d13C recorded at North Pacific ODP Site 849 were subtracted from each basin record leaving a residual d13C history that reflects variations in ventilation. During the previous interglacial intermediate waters above 2000m contained less oxygen than they do today or Pacific deep water at Site 849 was better ventilated. Intermediate water ventilation began to improve during oxygen isotope stage 4 and continued to improve throughout stages 3 and 2. This enhanced ventilation was not contemporaneous at all depths and appears to have progressed upwards through the water column. The diachronous nature of these changes suggest that there was not simply an "on"/"off" mechanism which resulted in higher or lower ventilation in the North Pacific during the last glacial cycle.
Resumo:
Heinrich events are well documented for the last glaciation, but little is known about their occurrence in older glacial periods of the Pleistocene. Here we report scanning XRF and bulk carbonate d18O results from Integrated Ocean Drilling Program Site U1308 (reoccupation of Deep Sea Drilling Project Site 609) that are used to develop proxy records of ice-rafted detritus (IRD) for the last ~1.4 Ma. Ca/Sr is used as an indicator of IRD layers that are rich in detrital carbonate (i.e., Heinrich layers), whereas Si/Sr reflects layers that are poor in biogenic carbonate and relatively rich in detrital silicate minerals. A pronounced change occurred in the composition and frequency of IRD at ~640 ka during marine isotope stage (MIS) 16, coinciding with the end of the middle Pleistocene transition. At this time, "Hudson Strait" Heinrich layers suddenly appeared in the sedimentary record of Site U1308, and the dominant period of the Si/Sr proxy shifted from 41 ka prior to 640 ka to 100 ka afterward. The onset of Heinrich layers during MIS 16 represents either the initiation of surging of the Laurentide Ice Sheet (LIS) off Hudson Strait or the first time icebergs produced by this process survived the transport to Site U1308. We speculate that ice volume (i.e., thickness) and duration surpassed a critical threshold during MIS 16 and activated the dynamical processes responsible for LIS instability in the region of Hudson Strait. We also observe a strong coupling between IRD proxies and benthic d13C variation at Site U1308 throughout the Pleistocene, supporting a link between iceberg discharge and weakening of thermohaline circulation in the North Atlantic.
Resumo:
During the early Pliocene warm period (~4.6-4.2 Ma) in the Eastern Equatorial Pacific upwelling region, sea surface temperatures were warm in comparison to modern conditions. Warm upwelling regions have global effects on the heat budget and atmospheric circulation, and are argued to have contributed to Pliocene warmth. Though warm upwelling regions could be explained by weak winds and/or a deep thermocline, the temporal and spatial evolution of the equatorial thermocline is poorly understood. Here we reconstruct temporal and spatial changes in subsurface temperature to monitor thermocline depth and show the thermocline was deeper during the early Pliocene warm period than it is today. We measured subsurface temperature records from Eastern Equatorial Pacific ODP transect Sites 848, 849, and 853 using Mg/Ca records from Globorotalia tumida, which has a depth habitat of ~50-100 m. In the early Pliocene, subsurface temperatures were ~4-5°C warmer than modern temperatures, indicating the thermocline was relatively deep. Subsurface temperatures steeply cooled ~2-3°C from 4.8 to 4.0 Ma and continued to cool an additional 2-3°C from 4.0 Ma to present. Compared to records from other regions, the data suggests the pronounced subsurface cooling between 4.8 and 4.0 Ma was a regional signal related to restriction of the Isthmus of Panama, while continued cooling from 4.0 Ma to present was likely related to global processes that changed global thermocline structure. Additionally, the spatial evolution of the equatorial thermocline along a N-S transect across ODP Sites 853, 849 and 848 suggests an intensification of the southeast trades from the Pliocene to present. Large-scale atmospheric and oceanographic circulation processes link high and low latitude climate through their influence on equatorial thermocline source water regions and consequently the equatorial thermocline. Through these low latitude/high latitude linkages, changes in the equatorial thermocline and thermocline source water played an important role in the transition from the warm Pliocene to the cold Pleistocene.
Resumo:
Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0-430 ka and five records from 0-798 ka. The first principal component, which we use as the stack, describes ~80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). When we compare the sea level stack with the d18O of benthic foraminifera, we find that sea level change accounts for about ~40 % of the total orbital-band variance in benthic d18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the d18O of seawater.
Resumo:
Leg 92 of the Deep Sea Drilling Project cored sediments containing calcareous microfossils at six sites along 19°S latitude in the South Pacific Ocean. Shipboard examination of these sediments revealed planktonic foraminifers of uppermost Oligocene through Pleistocene age that were identified and assigned to biostratigraphic zones according to the tropical zonation scheme of Blow (1969). Preservation of planktonic foraminifers in the sites from Leg 92 has been affected by the position of each site with respect to the lysocline and calcium carbonate compensation depth (CCD) at the time of deposition, depth of burial, and sediment accumulation rate (rate of burial). An additional factor may also be important, especially in the sediments deposited immediately above basement. Evidence of poor preservation in basal sediments of Holes 600C and 601, which have always been shallower than both the lysocline and the CCD, suggests that hydrothermal solutions circulating within young oceanic crust may penetrate the overlying sediments and affect the preservation of calcareous microfossils deposited there.
Resumo:
Site 722 provides high resolution records of percent CaCO3, magnetic susceptibility, d18O, organic carbon, and coarse fraction for the past 3.4 m.y. from the crest of the Owen Ridge, northwestern Arabian Sea. Within this time interval, most of the carbonate percent variations can be attributed to terrigenous dilution and do not reflect changes in the carbonate system. From the late Pliocene to Present, the average rate of calcium carbonate accumulation increases from 1 to 3 g/cm**2/k.y. and the average accumulation of organic carbon decreases from 75 to 30 mg/cm**2/k.y. The carbonate component is more dissolved in the older interval. The long-term variations in carbonate accumulation may reflect a greater input of organic matter in the late Pliocene, which decomposes to produce CO2 and dissolve carbonate. Magnetic susceptibility and % noncarbonate (100 - CaCO3%) reflect changes in the amount of the lithogenic component in the sediments. The period of variation of lithogenic material is the same period as the original forcing of the regional summer monsoon, however, the timing matches global aridity patterns and global ice volume (sea level) changes. This preliminary analysis suggests that the high frequency variation of lithogenic material persists for at least the last 3.4 m.y. Within the last million years, calcium carbonate accumulation has a large amplitude signal that covaries with major changes in ice volume. Both calcium carbonate and noncarbonate (mostly terrigenous) accumulation are greatest during glacial stages. Interglacial intervals are characterized by low mass accumulation rates, increased foraminifer fragmentation, and increased opal concentration. The accumulation of organic carbon matches the high frequency changes in sedimentation rates. We attribute this high correlation to enhanced preservation of organic carbon by increased sedimentation rate. Of the three major biological components studied, only opal exhibits the variations expected for a biological productivity system forced by monsoonal upwelling driven by changes in northern hemisphere summer radiation.
Resumo:
The Holocene Twin Slides form the most recent of recurrent mass wasting events along the NE portion of Gela Basin within the Sicily Channel, central Mediterranean Sea. Here, we present new evidence on the morphological evolution and stratigraphic context of this coeval slide complex based on deepdrilled sediment sequences providing a >100 ka paleo-oceanographic record. Both Northern (NTS) and Southern Twin Slide (STS) involve two failure stages, a debris avalanche and a translational slide, but are strongly affected by distinct preconditioning factors linked to the older and buried Father Slide. Core-acoustic correlations suggest that sliding occurred along sub-horizontal weak layers reflecting abrupt physical changes in lithology or mechanical properties. Our results show further that headwall failure predominantly took place along sub-vertical normal faults, partly through reactivation of buried Father Slide headscarps.
Resumo:
At Ocean Drilling Program Sites 752 and 754, located on Broken Ridge in the eastern Indian Ocean, we recovered a sequence of shallow-water pelagic sediments that span the past 90 m.y. The Oligocene to Pleistocene portion of these sediments are unconsolidated carbonate oozes that display a coherent variation in bulk grain size. We believe these sediments to be winnowed, and suggest that their grain size is a measure of that winnowing energy. The largest increase in grain size, interpreted to represent an enhancement in the energy of ocean currents, occurs in the earliest late Miocene. This increase occurs about 20 m upcore from the oxygen isotope indication of ice-volume increase about 13 Ma, and is about 3 m.y. younger. If this distinct temporal separation between proxy indicators of ice volume and of current intensity observed in the Broken Ridge cores is correct, the general impression of paleoclimatologists that the planetary temperature gradient and therefore atmospheric and oceanic circulation intensity varies directly with ice volume needs to be reconsidered.