834 resultados para Late Quaternary
Resumo:
In order to reconstruct hydrographic changes during glacial-interglacial cycles for a transequatorial transect we analyzed oxygen isotopes of Globigerinoides sacculifer (without sac-like chamber) and abundances of Globorotalia truncatulinoides (dextral) from FS Meteor cores GeoB 2204-2 (Brazilian continental slope) and GeoB 1523-1 (Ceara Rise). Delta d18O values of G. sacculifer between the two cores were calculated. Modern Delta d18O (G. sacculifer) is ~0.2 per mill between the two core positions, reflecting differences in sea surface salinity (SSS). Higher SSS at GeoB 1523-1 (Ceara Rise) is the result of increased precipitation in the region of the Intertropical Convergence Zone. During glacials the ?18O records from the two cores converge to the same absolute value, resulting in ??18O values of around 0 per mill. Maximum abundances of G. truncatulinoides (dex) correlate with minimum Delta d18O, suggesting a possible increase of SSS at GeoB 1523-1 during stages 2, 3, 4, and 6, which is related to a glacial weakening of the tropical Hadley Cell [Gates, 1976]. Variations in tropical sea surface temperatures are assumed to be low [Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP), 1981].
Resumo:
We present late Quaternary records of aragonite preservation determined for sediment cores recovered on the Brazilian Continental Slope (1790-2585 m water depth) where North Atlantic Deep Water (NADW) dominates at present. We have used various indirect dissolution proxies (carbonate content, aragonite/calcite contents, and sand percentages) as well as gastropodal abundances and fragmentation of Limacina inflata to determine the state of aragonite preservation. In addition, microscopic investigations of the dissolution susceptibility of three Limacina species yielded the Limacina Dissolution Index which correlates well with most of the other proxies. Excellent preservation of aragonite was found in the Holocene section, whereas aragonite dissolution gradually increases downcore. This general pattern is attributed to an overall increase in aragonite corrosiveness of pore waters. Overprinted on this early diagenetic trend are high-frequency fluctuations of aragonite preservation, which may be related to climatically induced variations of intermediate water masses.
Resumo:
To investigate late Quaternary paleoclimatic and paleoceanographic change in the sedimentary record, preserved on the Australian Continental Margin during the late Quaternary, core material was collected from Ocean Drilling Program, Leg 133, Site 819. An expanded sequence of late Quaternary, rhythmically bedded, predominantly hemipelagic sediments were recovered from Hole 819A. The foraminiferal d18O record preserved at Hole 819A suggests that the late Quaternary section is incomplete. Both benthic and planktonic d18O stratigraphies can be traced tentatively downcore to stage 6 at about 32.5 mbsf, where a major hiatus occurs. At this level, a slump detachment surface has been identified (Shipboard Scientific Party, 1991). This slump has removed marine oxygen isotope stages 7 to 13. Below 32.5 mbsf, continuous correlation can be achieved in the planktonic d18O curve, with existing deep-sea foraminiferal oxygen isotope stratigraphies from stage 14 through stage 28. The major hiatus at 32.5 mbsf marks the position of a significant change in the character of the sedimentation at Site 819. Sediments below 32.5 mbsf, relative to those above 32.5 mbsf, are characterized by less variation in mean particle size; lower percentages of carbonate content in the coarse fraction (>63 µm); a stronger relationship between the percentage of fine fraction and magnetic mineral concentration, and lower foraminiferal abundances. Above the hiatus, large fluctuations in mean particle size occurred, which have been interpreted to be the result of high foraminiferal abundances. Early highstands show high terrigenous influx in the fine fraction above the hiatus. This is the opposite of the general idea of high terrigenous influx during lowstands of sea level on siliciclastic dominated continental margins. We are far from understanding the origin of this material and further investigation will be required (see also Glenn et al., this volume). All our records, except the planktonic foraminiferal oxygen isotope record, indicate that the major hiatus marks the position of a significant change in the environment at Site 819. The planktonic foraminiferal d18O record suggests that environmental change occurred prior to the formation of the hiatus (i.e., near the Brunhes/Matuyama [B/M] boundary). The interval between the B/M boundary and the hiatus represents a transitional period between two different patterns of ocean circulation. Throughout most of the lower part of the sequence, Site 819 was at a shallow-water depth and local oceanographic conditions were dominated by sluggish Subtropical Central Water (SCW) flow. However, near the B/M boundary, ocean circulation patterns intensified, reflecting a worldwide change in paleoenvironment. Enhanced ocean circulation patterns were possibly aided by tectonic subsidence. During this period Site 819 became progressively more under the influence of Antarctic Intermediate Water (AAIW), than SCW. In the upper part of the sequence at Hole 819 A, we see a continuation of the pattern of oceanographic reorganization suggested during stages 21 through 14. Intensification of the subsurface oceanographic circulation was also accompanied by the progressive wedging southward of surface waters associated with the East Australian Current (EAC). The change in the nature of the records in the lower and upper parts of the sequence at Site 819 are thought to reflect perturbations by the orbital eccentricity cycle.
Resumo:
The Mid-Pleistocene transition (MPT) of the global climate system, initiated by a shift towards much larger northern hemisphere ice shields at around 920 ka and ending with predominance of 100 kyr ice age cyclicity since about 640 ka, is one of the fundamental enigmas in Quaternary climate evolution. Climate proxy records not exclusively linked to global ice volume are necessary to advance understanding of the MPT. Here we present a high-resolution Pleistocene magnetic susceptibility time series of 12 sediment cores from the subtropical South Atlantic essentially reflecting dissolution driven variations in carbonate accumulation controlled by changes in deep water circulation. In addition to characteristics known from delta18O records, the data sets reveal three remarkable features intimately related to the MPT: (1) an all-Pleistocene minimum of carbonate accumulation in the South Atlantic at 920 ka, (2) a MPT interim state of reduced carbonate deposition, indicating that the MPT period may have been a discrete state of the Pleistocene deep water circulation and climate system and (3) a terminal MPT event at around 540-530 ka documented in several peculiarities such as thick laminated layers of the giant diatom Ethmodiscus rex.
Resumo:
Iron speciation was determined in hemiplegic sediments from a high productivity area to investigate systematically the early diagenetic reactivity of Fe. A combination of various leaching agents (1 M HCI, dithionite buffered in citrate/acetic acid, HF/H2SO4, acetic Cr(II)) was applied to sediment and extracted more than 80% of total Fe. Subsequent Fe species determination defined specific mineral fractions that are available for Fe reduction and fractions formed as products of Fe diagenesis. To determine the Fe speciation of (sheet) silicates we explored an extraction procedure (HF/H2SO4) and verified the procedure by application to standard rocks. Variations of Fe speciation of (sheet) silicates reflect the possible formation of Fe-bearing silicates in near surface sediments. The same fraction indicates a change in the primary input at greater depth, which is supported by other parameters. The Fe(II)/ Fe(III) -ratio of total sediment determined by extractions was compared with Mössbauer-spectroscopy ] at room temperature and showed agreement within 10%. M6ssbauer-spectroscopy indicates the occurrence of siderite in the presence of free sulfide and pyrite, supporting the importance of microenvironments during mineral formation. The occurrence of other Fe(II) bearing minerals such as ankerite (Ca-, Fe-, Mg-carbonate) can be presumed but remains speculative.
Resumo:
Fluxes of organic carbon normalised to a depth of 1000 m from 18 sites in the Atlantic and the Southern Ocean are presented, comprising nine biogeochemical provinces as defined by Longhurst et al. (1995. Journal of Plankton Research 17, 1245-1271). For comparison with primary production, we used a recent compilation of primary production values derived from CZCS data (Antoine et al., 1996. Global Biogeochemical Cycles 10, 57-69). In most cases, the seasonal patterns stood reasonably well in accordance with the carbon fluxes. Particularly, organic carbon flux records from two coastal sites off northwest and southwest Africa displayed a more distinct correlation to the primary production in sectors (1 x 1°) which are situated closer to the coastal environments. This was primarily caused by large upwelling filaments streaming far offshore, resulting in a cross-shelf carbon transport. With respect to primary production, organic carbon export to a water depth of 1000 m, and the fraction of primary production exported to a depth of 1000 m (export fraction=EF1000), we were able to distinguish between: (1) the coastal environments with highest values (EF1000=1.75-2.0%), (2) the eastern equatorial upwelling area with moderately high values (EF1000=0.8-1.1%), (3) and the subtropical oligotrophic gyres that yielded lowest values (EF1000=0.6%). Carbon export in the Southern Ocean was low to moderate, and the EF1000 value seems to be quite low in general. Annual organic carbon fluxes were proportional to primary production, and the export fraction EF1000 increased with primary production up to 350 gCm**-2 yr**-1. Latitudinal variations in primary production were reflected in the carbon flux pattern. A high temporal variability of primary production rates and a pronounced seasonality of carbon export were observed in the polar environments, in particular in coastal domains, although primary production (according to Antoine et al., 1996. Global Biogeochemical Cycles 10, 57-69), carbon fluxes, and the export fraction remained at low.
Resumo:
The chemical composition of shells of the planktonic foraminifer Globigerinoides ruber (white) is frequently used to determine past sea surface conditions. Recently, it has been shown that arbitrarily defined morphotypes within this species exhibit different chemical and isotopic signatures. Here, we investigate the occurrence through time and in space of morphological types of G. ruber (white) in late Quaternary and Holocene sediments of the central and the eastern Mediterranean Sea. In 115 samples representing two distinct time intervals (MIS 1-2 and MIS 9-12) at ODP Site 964 and the piston core GeoTü-SL96, we have defined three morphological types within this species and determined their relative abundances and stable isotopic composition. A quantitative analysis of morphological variation within G. ruber (white) in four samples revealed that the subjectively defined morphotypes occupy separate segments of a continuous and homogenous morphospace. We further show that the abundance of the morphotypes changes significantly between glacials and interglacials and that the three morphotypes of G. ruber show significant offsets in their stable isotopic composition. These offsets are consistent within glacial and interglacial stages but their sign is systematically reversed between the two Sites. Since the isotopic shifts among the three G. ruber morphotypes are systematic and often exceed 1per mil, their understanding is essential for the interpretation of all G. ruber-based proxy records for the paleoceanographic development of the Mediterranean during the late Quaternary.