893 resultados para Larger foraminifera
Resumo:
A sediment core from the West Spitsbergen continental margin was studied to reconstruct climate and paleoceanographic variability during the last ~9 ka in the eastern Fram Strait. Our multiproxy evidence suggests that the establishment of the modern oceanographic configuration in the eastern Fram Strait occurred stepwise, in response to the postglacial sea-level rise and the related onset of modern sea-ice production on the shallow Siberian shelves. The late Early and Mid Holocene interval (9 to 5 ka) was generally characterized by relatively unstable conditions. High abundance of the subpolar planktic foraminifer species Turborotalita quinqueloba implies strong intensity of Atlantic Water (AW) inflow with high productivity and/or high AW temperatures, resulting in a strong heat flux to the Arctic. A series of short-lived cooling events (8.2, 6.9. and 6.1 ka) occurred superimposed on the warm late Early and Mid Holocene conditions. Our proxy data imply that simultaneous to the complete postglacial flooding of Arctic shallow shelves and the initiation of modern sea-ice production, strong advance of polar waters initiated modern oceanographic conditions in the eastern Fram Strait at ~5.2 ka. The Late Holocene was marked by the dominance of the polar planktic foraminifer species Neogloboquadrina pachyderma, a significant expansion of sea ice/icebergs, and strong stratification of the water column. Although planktic foraminiferal assemblages as well as sea surface and subsurface temperatures suggest a return of slightly strengthened advection of subsurface Atlantic Water after 3 ka, a relatively stable cold-water layer prevailed at the sea surface and the study site was probably located within the seasonally fluctuating marginal ice zone during the Neoglacial period.
Resumo:
The paleoecology of Cretaceous planktic foraminifera during the Late Cenomanian to Coniacian period (~95-86 Ma) remains controversial since much of the tropical marine record is preserved as chalk and limestone with uncertain geochemical overprints. Here we present delta13C and delta18O data from sieve size fractions of monospecific samples of exceptionally well preserved planktic foraminifera recovered during Ocean Drilling Program Leg 207 (Demerara Rise, western tropical Atlantic). Our results suggest that all species studied (Hedbergella delrioensis, Heterohelix globulosa, Marginotruncana sinuosa, Whiteinella baltica) grew primarily in surface waters and did not change their depth habitat substantially during their life cycle. Comparison of size-related ontogenetic trends in delta13C in Cretaceous and modern foraminifera further suggests that detection of dinoflagellate photosymbiosis using delta13C is confounded by physiological effects during the early stages of foraminifer growth, raising doubts about previous interpretations of photosymbiosis in small foraminifera species. We propose that obligate photosymbiosis involving dinoflagellates may not have evolved until the Campanian or Maastrichtian since our survey of Cenomanian-Coniacian species does not find the delta18O and delta13C size-related trends observed in modern foraminifer-dinoflagellate symbioses.
Resumo:
Isotopic and sedimentologic data from Ocean Drilling Program hole 704A suggest that isotopic stages 7, 9, and 11 were marked by unusually strong interglacial conditions in surface waters of the southern ocean. During interglacial stages 9 and 11, warm surface waters penetrated far poleward and may have led to destabilization of the West Antarctic Ice Sheet. In contrast, the strongest glacial conditions in surface waters of the subantarctic South Atlantic occurred during oxygen isotopic stage 12. Comparisons of benthic carbon isotopic gradients between sites located in the North Atlantic, southern ocean, and Pacific indicate that the production of upper North Atlantic Deep Water (uNADW) was strongest during stages 7,9, and 11 and weakest during stage 12, These results suggest a possible link between the flux of uNADW and paleoceanographic change in the southern ocean and support the traditional NADW-Antarctic connection whereby increased NADW leads to warming of the southern ocean.
Resumo:
Stratigraphic, faunal and isotopic analyses of the Maastrichtian at DSDP sites 525A and 21 in the South Atlantic reveal a planktic foraminiferal fauna characterized by two major events, an early late Maastrichtian diversification and end-Maastrichtian mass extinction. Both events are accompanied by major changes in climate and productivity. The diversification event which occurred in two steps between 70.5 and 69.1 Ma increased species richness by a total of 43% and coincided with the onset of major cooling in surface and bottom waters and increased surface productivity. The onset of the terminal decline in Maastrichtian species richness began at 67.5 Ma and the first significant decline in surface productivity occurred at 66.2 Ma, coincident maximum cooling to 13°C in surface waters and the reduction of the surface-to-deep temperature gradient to less than 5°C. Major climatic and moderate productivity changes mark the mass extinction and the last 500 kyr of the Maastrichtian. Between 200 and 400 kyr before the K-T boundary surface and deep waters warmed rapidly by 3-4°C and cooled again during the last 100 kyr of the Maastrichtian. Surface productivity decreased only moderately across the K-T boundary. Species richness began to decline during the late Maastrichtian cooling and by K-T boundary time, the mass extinction had claimed 66% of the species. Viewed within the context of Maastrichtian climate and productivity changes, the K-T mass extinction could have resulted from extreme environmental stress even without the addition of an extraterrestrial impact.
Resumo:
Late Campanian through Maastrichtian sea-level changes are examined based on lithology, macrofossils and benthic foraminifera at the Elles and El Kef sections in Tunisia. Six major sea-level regressions are identified during the late Campanian (74.4-74.2 Ma, 74.0-72.5 Ma), the Campanian-Maastrichtian transition (72.2-70.3 Ma), early Maastrichtian (69.6-69.3 Ma, 68.9-68.3 Ma), and late Maastrichtian (~65.5 Ma). Correlation of the Maastrichtian sea-level regressions with the oxygen isotope record of DSDP Site 525 in the middle latitude South Atlantic reveals that they coincide with episodes of high latitude cooling and appear to be of eustatic origin.
Resumo:
Monthly samples of stratified plankton tows taken from the slope waters off Cape Cod nearly 25 years ago are used to describe the seasonal succession of planktonic foraminifera and their oxygen isotope ratios. The 15°C seasonal cycle of sea surface temperature (SST) accounts for a diverse mixture of tropical to subpolar species. Summer samples include various Globigerinoides and Neogloboquadrina dutertrei, whereas winter and early spring species include Globigerina bulloides and Neogloboquadrina pachyderma (dextral). Globorotalia inflata lives all year but at varying water depths. Compared with the fauna in 1960-1961 (described by R. Cifelli), our samples seem warmer. Because sea surface salinity varies little during the year, d18O is mostly a function of SST. Throughout the year, there are always species present with d18O close to the calculated isotopic equilibrium of carbonate with surface seawater. This raises the possibility that seasonality can be estimated directly from the range of d18O in a sediment sample provided that the d18O-salinity relationship is the same as today.