664 resultados para Indian Ocean on monsoon


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between the distribution of benthic foraminifera and sediment type and depositional environment in the Arabian Sea is discussed. The benthic foraminiferal fauna were sampled in nineteen Recent surface sediment samples, and geochemical variables of the sediment of the same samples were measured. The water depths for the box core samples varies from 440 to 4040 m. A total of 103 species and six species-complexes were identified. The geochemical properties were found to correspond well to the sediment type and depositional environment and six different sediment/depositional environment types could be distinguished. Analysis of the benthic foraminiferal fauna reveals specific faunal assemblages that are closely related to these sediment/depositional environment types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modern Indian Ocean summer monsoon is driven by differential heating between the Asian continent and the Indian Ocean to the south. This differential heating produces a strong pressure gradient which drives southwest monsoon winds during June, July, and August. Satellite and meteorological observations, aerosol measurements, sediment trap studies, and mineralogical studies indicate an atmospheric mode of transport for modern lithogenic sediments in the northwest Arabian Sea. Analyses of lithogenic grain size and mass accumulation rate (MAR) records from the Owen Ridge indicate that eolian transport has been the primary mode of transport for the past 370 kyr. Visual inspection shows that the MAR record is positively correlated with global ice volume as indicated by the marine delta18O record. In contrast, the grain-size record varies at a much higher frequency, showing little correlation to either the MAR or the delta18O records. Spectral analyses confirm these relationships, indicating that the lithogenic grain-size and MAR records are coherent only over the precession band whereby the grain size leads the MAR by 124° (~8 kyr). We conclude that an eolian transport mechanism is the only mechanism that allows for this phase difference and at the same time is supported by comparison of the grain size and MAR with independent eolian records. We use lithogenic grain size as a paleoclimatic indicator of summer monsoon wind strength and lithogenic MAR as a paleoclimatic indicator of source-area aridity. These interpretations are supported by comparison of the lithogenic records to independent indicators of wind strength (Globigerina bulloides upwelling record) and aridity (a loess record from central China). Such comparisons indicate high coherence and zero phase relationships. Our work supports the findings of previous studies which have documented the link between monsoon strength and the Earth's axial precession cycles. Both the lithogenic MAR and the grain-size records have high coherency with precessional insolation. Maximum lithogenic MAR (source-area aridity) is in phase with delta18O (global ice volume) and leads maximum precessional insolation by 88° (~6 kyr). We attribute this lead to the influence of glacial conditions on the aridity, and therefore the deflation potential, of the source areas. Maximum lithogenic grain size (summer monsoon wind strength) lags maximum precession by 148° (~9 kyr). We attribute this lag both to the influence of global and/or local ice volume and to the availability of latent heat from the southern hemisphere Indian Ocean, the two of which combine to determine the strength of the Indian Ocean monsoon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The number of cysts of marine planktic infusoria was determined in oligotrophic waters of the central Indian Ocean and productive waters of the Southeast Pacific. Cyst biomass at stations studied varied from 1.2 to 23.4 ?g/l, which was 9.9-115.8% of free infusoria biomass in the 0-15 m layer in the Indian Ocean and 0.3-19.3% in the Southeast Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of petrographic studies of ultrabasites and gabbro from rift zones of the Indian Ocean are discussed using materials of Cruise 36 of R/V Vityaz. Rocks sampled from two sites 2700 km apart are close to each other in their composition. Petrographically ultrabasic rocks are divided into four subgroups: I - dunite; II - harzburgite, serpentinite; III - plagioclase lherzolite; and IV - metamorphically altered rocks. Petrographic description and chemical composition of basic rock varieties are presented as well as description of rock-forming minerals and their optical properties. Formation of pyroxene and plagioclase is shown to be related to autometasomatosis. Formation of ultrabasite in rift zones is related to complicated processes.

Relevância:

100.00% 100.00%

Publicador: