278 resultados para Continental precipitation annual amplitude


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Annual precipitation for the last 2,500 years was reconstructed for northeastern Qinghai from living and archaeological juniper trees. A dominant feature of the precipitation of this area is a high degree of variability in mean rainfall at annual, decadal, and centennial scales, with many wet and dry periods that are corroborated by other paleoclimatic indicators. Reconstructed values of annual precipitation vary mostly from 100 to 300 mm and thus are no different from the modern instrumental record in Dulan. However, relatively dry years with below-average precipitation occurred more frequently in the past than in the present. Periods of relatively dry years occurred during 74-25 BC, AD 51-375, 426-500, 526-575, 626-700, 1100-1225, 1251-1325, 1451-1525, 1651-1750 and 1801-1825. Periods with a relatively wet climate occurred during AD 376-425, 576-625, 951-1050, 1351-1375, 1551-1600 and the present. This variability is probably related to latitudinal positions of winter frontal storms. Another key feature of precipitation in this area is an apparently direct relationship between interannual variability in rainfall with temperature, whereby increased warming in the future might lead to increased flooding and droughts. Such increased climatic variability might then impact human societies of the area, much as the climate has done for the past 2,500 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we present orbitally-resolved records of terrestrial higher plant leaf wax input to the North Atlantic over the last 3.5 Ma, based on the accumulation of long-chain n-alkanes and n-alkanl-1-ols at IODP Site U1313. These lipids are a major component of dust, even in remote ocean areas, and have a predominantly aeolian origin in distal marine sediments. Our results demonstrate that around 2.7 million years ago (Ma), coinciding with the intensification of the Northern Hemisphere glaciation (NHG), the aeolian input of terrestrial material to the North Atlantic increased drastically. Since then, during every glacial the aeolian input of higher plant material was up to 30 times higher than during interglacials. The close correspondence between aeolian input to the North Atlantic and other dust records indicates a globally uniform response of dust sources to Quaternary climate variability, although the amplitude of variation differs among areas. We argue that the increased aeolian input at Site U1313 during glacials is predominantly related to the episodic appearance of continental ice sheets in North America and the associated strengthening of glaciogenic dust sources. Evolutional spectral analyses of the n-alkane records were therefore used to determine the dominant astronomical forcing in North American ice sheet advances. These results demonstrate that during the early Pleistocene North American ice sheet dynamics responded predominantly to variations in obliquity (41 ka), which argues against previous suggestions of precession-related variations in Northern Hemisphere ice sheets during the early Pleistocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the first ecosystem-scale methane flux data from a northern Siberian tundra ecosystem covering the entire snow-free period from spring thaw until initial freeze-back. Eddy covariance measurements of methane emission were carried out from the beginning of June until the end of September in the southern central part of the Lena River Delta (72°22' N, 126°30' E). The study site is located in the zone of continuous permafrost and is characterized by Arctic continental climate with very low precipitation and a mean annual temperature of -14.7°C. We found relatively low fluxes of on average 18.7 mg/m**2/d, which we consider to be because of (1) extremely cold permafrost, (2) substrate limitation of the methanogenic archaea, and (3) a relatively high surface coverage of noninundated, moderately moist areas. Near-surface turbulence as measured by the eddy covariance system in 4 m above the ground surface was identified as the most important control on ecosystem-scale methane emission and explained about 60% of the variance in emissions, while soil temperature explained only 8%. In addition, atmospheric pressure was found to significantly improve an exponential model based on turbulence and soil temperature. Ebullition from waterlogged areas triggered by decreasing atmospheric pressure and near-surface turbulence is thought to be an important pathway that warrants more attention in future studies. The close coupling of methane fluxes and atmospheric parameters demonstrated here raises questions regarding the reliability of enclosure-based measurements, which inherently exclude these parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Site 532 on the Walvis Ridge was sampled at 4000- to 800-year intervals from 2.24 to 2.60 Ma, spanning the three large glacial advances of the late Pliocene. An age model was created by correlating the oxygen isotope record to Site 607 with linear interpolations between tie-lines. The resultant age model differs from that in the site reports by more than 800,000 years, due to misidentification of a magnetic boundary. Sedimentation rates varied by an order of magnitude at this site, with minimum accumulation during glacial events. Interglacial intervals were charactrized by high marine production and high summer precipitation on land, while glacials had very low production and arid continental climate. During the large glacial events (Stages 96-100) conditions of low production and continental aridity reached their greatest intensity, but there is no evidence of a permanent mode shift in either marine or terrestrial records. Calcite concentration has a strong variation at obliquity frequencies, with maxima during interglacials, but occasionally shows a large amplitude at precessional frequencies as well, so that high concentrations occur in a few glacial intervals. As a result, color variation is not a reliable guide to glacial-scale cycles at this site. Composition of the phytoplankton assemblage is diverse and highly variable, and we have not been able to distinguish a clear indicator of upwelling-related production. Spectral analysis reveals obliquity and precessional signals in the pollen data, while several diatom records contain combination tones, indicating that these data represent a complicated response to both local and high-latitude forcing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the potential use of the stable isotope composition of the vegetative cysts of the photosynthetic dinoflagellate Thoracosphaera heimii for quantitative palaeotemperature reconstructions a method has been developed to purify T. heimii cysts from sediment samples. Stable oxygen and carbon isotopes have been measured on T. heimii cysts from 21 surface sediment samples from the equatorial Atlantic and South Atlantic Oceans. Calculated temperatures based on the palaeotemperature equation for inorganic calcite precipitation generally reflect mean annual temperatures of the upper water column, notably of thermocline depths. Although the present results suggest that the isotopic composition of T. heimii shells might be formed in equilibrium with the seawater in which the shells are being formed, future investigations are required to determine possible effects of metabolic and kinetic processes on the fractionation process. This pilot study therefore forms the basis for future investigations on the development of this tool and the determination of a species-specific palaeotemperature equation. The wide geographic and stratigraphic distribution of T. heimii cysts in sediments, the stable position of T. heimii within the water column and the high resistance of its cysts against calcite dissolution underline its potential for a wide usability in palaeotemperature reconstructions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. They rather indicate locally inhomogeneous rainfall changes and show, that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the context of the European OMEX Programme this investigation focused on gradients in the biomass and activity of the small benthic size spectrum along a transect across the Goban Spur from the outer Celtic Sea into Porcupine Abyssal Plain. The effects of food pulses (seasonal, episodic) on this part of the benthic size spectrum were investigated. Sediments sampled during eight expeditions at different seasons covering a range from 200 m to 4800 m water depth were assayed with biochemical bulk measurements: determinations of chloroplastic pigment equivalents (CPE), the sum of chlorophyll a and its breakdown products, provide information concerning the input of phytodetrital matter to the seafloor; phospholipids were analyzed to estimate the total biomass of small benthic organisms (including bacteria, fungi, flagellata, protozoa and small metazoan meiofauna). A new term 'small size class biomass' (SSCB) is introduced for the biomass of the smallest size classes of sediment-inhabiting organisms; the reduction of fluorescein-di-acetate (FDA) was determined to evaluate the potential activity of ester-cleaving bacterial exoenzymes in the sediment samples. At all stations benthic biomass was predominantly composed of the small size spectrum (90% on the shelf; 97-98% in the bathyal and abyssal parts of the transect). Small size class biomass (integrated over a 10 cm sediment column) ranged from 8 g C/m**2 on the shelf to 2.1 g C/m**2 on the adjacent Porcupine Abyssal Plain, exponentially decreasing with increasing water depth. However, a correlation between water depth and SSCB, macrofauna biomass as well as metazoan meiofauna biomass exhibited a significantly flatter slope for the small size classes in comparison to the larger organisms. CPE values indicated a pronounced seasonal cycle on the shelf and upper slope with twin peaks of phytodetrital deposition in mid spring and late summer. The deeper stations seem to receive a single annual flux maximum in late summer. SSCB and heterotrophic activity are significantly correlated to the amount of sediment-bound pigments. Seasonality in pigment concentrations is clearly followed by SSCB and activity. In contrast to macro- and megafauna which integrate over larger periods (months/years), the small benthic size classes, namely bacteria and foraminifera, proved to be the most reactive potential of the benthic communities to any perturbations on short time scales (days/weeks). The small size classes, therefore, occupy a key role in early diagenetic processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variations in sea surface temperature (SST), d18O of sea water (?18Ow), and salinity were reconstructed for the past 68 ka using a sediment core (AAS9/21) from the eastern Arabian Sea (EAS) in order to understand the changes in evaporation and precipitation associated with the monsoon system. The Mg/Ca-derived SST record varies by ~4°C; it shows that marine isotope stage (MIS) 4 was warmer than MIS 3, that the Last Glacial Maximum was 4°C cooler than the present, and that there was a 2°C increase within the Holocene. MIS 4 records higher d18Ow and salinity values than MIS 2, suggesting variable flow of low-salinity Bay of Bengal flow into the EAS during glacial periods. The transition from MIS 4 to MIS 3 was marked with a conspicuous shift from higher to lower d18Ow values, which reflects a decrease in the evaporation-precipitation budget in the EAS, perhaps due to the strengthening of southwest monsoon. Monsoon reconstructions based on d18Ow reveal that monsoon-driven precipitation was higher during MIS 3 and MIS 1 and was lower during MIS 2 and MIS 4. This is consistent with earlier monsoon reconstructions based on upwelling indices from the western Arabian Sea. However, the amplitude of monsoon fluctuations derived through upwelling indices and d18Ow varies significantly, which may indicate spatial variability of monsoon rainfall.