294 resultados para Colonizing vegetation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deep-sea cores M 16415-2 and M 16416-2 at about 9°N off Sierra Leone were analysed palynologically for the time interval 140,000-70,000 yr B.P. Results were presented in absolute (pollen concentration and pollen influx) and relative diagrams (pollen percentage). In a previous study it was evidenced that in northwest Africa pollen is mainly transported to the Atlantic by wind, so that the efficiency of aeolian pollen transport (pollen flux) could be used to evaluate changes in the intensity of the northeast trade winds. The glacial episodes (represented by the oxygen isotope stages 6 and 4) are characterized by strong northeast trade winds, whereas the last interglacial (stage 5) is characterized by weak trade winds. The pollen influx diagram shows that the intensity of the trade winds increased slightly during the relatively cool intervals of stage 5 (viz. 5.4 and 5.2). Tropical forest had maximally expanded around 124,000 yr B.P. (stage 5.5), around 98,000 yr B.P. (transition of stage 5.3 to 5.2), and around 70,000 yr B.P. (first part of stage 4): an increasing delay of the response of tropical forest to global intervals with maximum temperature is apparent during the last interglacial. As tropical forests need continuous humidity, the record of tropical forest monitors changes in climatic humidity south of the Sahara. During the last interglacial, the southern boundary of the Sahara shifted only little: expansions and contractions of the tropical forest area are correlated with contra-oscillations of the grass-dominated savanna zone. Great latitudinal shifts of the desert savanna boundary, on the contrary, occurred during the penultimate glacial interglacial transition (around 128,000 yr B.P.) to the north, and during the last interglacial-glacial transition (around 65,000 yr B.P.) to the south.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and sedge vegetation with higher soil moisture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Holocene sediment record of Lake Tiefer See exhibits striking alternations between well-varved and non-varved intervals. Here we present a high resolution multi-proxy record for the past ~6000 years and discuss possible causes for the observed sediment variability. This approach comprises of microfacies, geochemical and microfossil analyses as well as of a multiple dating concept including varve counting, tephrochronology and radiocarbon dating. Four periods of predominantly well-varved sediment were identified at 6000-3950 cal. a BP, 3100-2850 cal. a BP, 2100-750 cal. a BP and AD 1924-present. Except of sub-recent varve formation, these periods are considered to reflect reduced lake circulation and consequently, stronger anoxic bottom water conditions. In contrast, intercalated intervals of poor varve preservation or even extensively mixed non-varved sediments indicate strengthened lake circulation. Sub-recent varve formation since AD 1924 is, in addition to natural forcing, influenced by enhanced lake productivity due to modern anthropogenic eutrophication. The general increase in periods of intensified lake circulation in Lake Tiefer See since ~4000 cal. a BP presumably is caused by gradual changes in Northern Hemisphere orbital forcing, leading to cooler and windier conditions in Central Europe. Superimposed decadal to centennial scale variability of the lake circulation regime likely is the result of additional human-induced changes of the catchment vegetation. The coincidence of major non-varved periods at Lake Tiefer See and intervals of bioturbated sediments in the Baltic Sea implies a broader regional significance of our findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was conducted in the Swedish sub-Arctic, near Abisko, in order to assess the direction and scale of possible vegetation changes in the alpine-birch forest ecotone. We have re-surveyed shrub, tree and vegetation data at 549 plots grouped into 61 clusters. The plots were originally surveyed in 1997 and re-surveyed in 2010. Our study is unique for the area as we have quantitatively estimated a 19% increase in tree biomass mainly within the existing birch forest. We also found significant increases in the cover of two vegetation types - "birch forest-heath with mosses" and "meadow with low herbs", while the cover of snowbed vegetation decreased significantly. The vegetation changes might be caused by climate, herbivory and past human impact but irrespective of the causes, the observed transition of the vegetation will have substantial effects on the mountain ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This collection contains measurements of vegetation and soil surface cover measured on the plots of the different sub-experiments at the field site of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. The following series of datasets are contained in this collection: 1. Measurements of vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the species that have been sown into the plots to create the gradient of plant diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beach and salt marsh vegetation of the Uummannaq District, northern West Greenland (c. 70°15' N - 72° N, 49° W - 54° W) was studied 1998 according to the Braun-Blanquet phytosociological approach. Habitat analyses included soil chemistry. Such vegetation locally occurs and is not developed over extensive areas. On gravely stony beaches a Mertensia maritima ssp. maritima community occurs, while a Honckenya peploides var. diffusa community is confined to sandy beaches. The association Honckenyo diffusae-Elymetum mollis Thannh. 1975 is confined to sandy shore walls and low dunes. All vegetation types are assigned to the alliance Honckenyo- Elymion arenariae Tx. 1966, which again is a unit of the order Honckenyo- Elymetalia arenariae Tx. 1966, which is sub ordered to the class Honckenyo-Elymetea arenariae Tx. 1966. On fine sediments along sheltered coasts salt marsh vegetation is locally developed mainly on fiord deltas and outwash plains of small rivers and streams. A distinct zonation pattern in vegetation can be observed from the lower to upper salt marsh: Puccinellietum phryganodis Hadac 1946 association, Caricetum subspathaceae Hadac 1946 association, Caricetum ursinae Hadac 1946 association (all assigned to the alliance Puccinellion phryganodis Hadac 1946) and Festuco-Caricetum glareosae Nordh. 1954 association (assigned to the alliance Armerion maritimae Br.-Bl. et de Leeuw 1936). Both alliances are units of the order Glauco- Puccinellietalia Beeftink et Westhoff in Beeftink 1965, which is assigned to the class Asteretea tripolii Westhoff et Beeftink in Beeftink 1962. TWINSPAN and CCA support the vegetation classification and the CCA with soil chemistry parameters shows that salinity (related to position above MHW) and Ncontent are strongly correlated with the floristical differentiation of the vegetation of the Honckenyo-Elymetea class. In the Asteretea tripolii class, position above MHW (negatively correlated with pH, conductivity and Clcontent) and fresh water supply are likely the main factors, which affect vegetation differentiation. A synoptic survey of vegetation types from Greenland based on published phytosociological tables is presented and distribution of the vegetation types is addressed, just as their position in a circumpolar context. Moreover a Cochlearia groenlandica-Melandrium triflorum community is described as a new vegetation type, occurring on shallow soil on cliffs influenced by salt spray.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hominid evolution in the late Miocene has long been hypothesized to be linked to the retreat of the tropical rainforest in Africa. One cause for the climatic and vegetation change often considered was uplift of Africa, but also uplift of the Himalaya and the Tibetan Plateau was suggested to have impacted rainfall distribution over Africa. Recent proxy data suggest that in East Africa open grassland habitats were available to the common ancestors of hominins and apes long before their divergence and do not find evidence for a closed rainforest in the late Miocene. We used the coupled global general circulation model CCSM3 including an interactively coupled dynamic vegetation module to investigate the impact of topography on African hydro-climate and vegetation. We performed sensitivity experiments altering elevations of the Himalaya and the Tibetan Plateau as well as of East and Southern Africa. The simulations confirm the dominant impact of African topography for climate and vegetation development of the African tropics. Only a weak influence of prescribed Asian uplift on African climate could be detected. The model simulations show that rainforest coverage of Central Africa is strongly determined by the presence of elevated African topography. In East Africa, despite wetter conditions with lowered African topography, the conditions were not favorable enough to maintain a closed rainforest. A discussion of the results with respect to other model studies indicates a minor importance of vegetation-atmosphere or ocean-atmosphere feedbacks and a large dependence of the simulated vegetation response on the land surface/vegetation model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2009, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2009, in addition to the four community level cover estimates, cover of the moss layer was estimated.