624 resultados para Benthic amphipod
Resumo:
Early diagenetic ultrastructural alterations of benthic foraminifers of the genera Elphidium and Ophthalmina from the shallow water sediments of the Kiel Bight were investigated by scanning electron microscopy. Pure solution patterns were deduced from supplementary experiments.//Several carbonate destroying processes can be specified by ultrastructural patterns of the shell surfaces. Based on these patterns three zones are established, each showing different mechanisms of shell fragmentation: 1) zone of abrasion, 2) zone of disintegration, 3) zone of corrosion. This zonation depends on the water depth and is caused primarily by water agitation and by under saturation of the bottom water with respect to carbonate.
Resumo:
New benthic foraminiferal stable isotopic records of northeast Pacific intermediate water (ODP Site 1014, 1177 m) and mid-depth water (ODP Site 1018, 2476 m) were compared to isotopic records of deep water in the tropical Pacific (ODP Site 849, 3851 m) for the reconstruction of vertical profiles of nutrient and physical properties from the Early Pliocene to the Early Pleistocene (approx. 5-1.4 Ma). Our data indicate that, for the entire interval, there was enhanced north Pacific intermediate water ventilation relative to today, and a similar to modern circulation pattern with northward flowing Pacific Bottom Water (PBW) beneath its southward flowing return flow. However, the core of maximally aged return flow resided as deep as ~2500 m (as compared to ~1500 m today), probably due to the strengthened intermediate water flow. Less apparent aging of deep water along its path before 2.7 Ma indicates that thermohaline overturning may have been more rapid in the warm period of the Early Pliocene. In addition, prior to 2.7 Ma, foraminiferal oxygen isotopic values at mid-depth sites are higher than at deep sites (a reversed vertical gradient relative to today) in both the Atlantic and Pacific Oceans. We suggest that NADW was warmer and more saline than today and that it influenced mid-depth waters throughout the Atlantic and Pacific Oceans. Enhanced Pliocene formation of warmer/saltier intermediate water in the north Pacific, and deep water in the north Atlantic, may have been a result of higher than modern high/mid-latitude sea surface temperatures, evaporation, and salinity.
Resumo:
To reveal changes in the oceanic environment on the continental slope adjacent to the Great Barrier Reef, east of Cairns (NE Australia), planktonic and benthic foraminiferal abundances were counted and planktonic percentages (P/B ratios) were determined in sediments from two sites. Counts of planktonic and benthic specimens per gram of sediment over the last glacial/interglacial cycle at the shallowest Site 821, located in a water depth of 212 m just below the core of Subtropical Lower Water, show high abundances in the last glacial compared with the Holocene interglacial. We interpret the apparent increase in abundances during the last glacial as mainly a consequence of fluctuations in the intensity of flow of Subtropical Lower Water along the outer shelf edge and upper slope. During the lowstand in sea level, the increased flow winnowed the sediments, concentrating the foraminiferal skeletons. The P/B ratios are low throughout, with the highest values occurring during the Holocene interglacial and glacial stage 2. This suggests that some upwelling might have occurred during glacial stage 2. The relatively deeper water Site 819 is located in 565.2 m of water in a zone of mixing between Subtropical Lower Water and Antarctic Intermediate Water. The studied record at this site represents middle to upper Quaternary sediments, but it was interrupted by a hiatus just above stage 15 (Alexander et al., this volume); stages 7 through 13 are missing. Below the hiatus (isotopic stages 15 through 21), the foraminiferal abundances are low, while above the hiatus, the highest abundances occur in isotopic stage 6. In addition, a major change in the P/B ratio occurs across the unconformity. Below the hiatus, the ratios are low and resemble the values of the top of Site 821; but above it, ratios rapidly fluctuate, with a tendency for high values during glacial periods. We interpret the changes across the hiatus as having been caused by a shift in the position of the mixing zone between subsurface Subtropical Lower Water and Antarctic Intermediate Water. The mixing zone of these watermasses was farther down the slope in isotopic stages 15 through 21. This is indicated by the low P/B ratios, similar to the values found in the top of Site 821, which presently is bathed in subtropical waters. Above the hiatus, the influence of Antarctic Intermediate Water increased, as inferred from the high P/B ratios.
Resumo:
Core-top samples from different ocean basins have been analyzed to refine our current understanding of the sensitivity of benthic foraminiferal calcite magnesium/calcium (Mg/Ca) to bottom water temperatures (BWT). Benthic foraminifera collected from Hawaii, Little Bahama Bank, Sea of Okhotsk, Gulf of California, NE Atlantic, Ceara Rise, Sierra Leone Rise, the Ontong Java Plateau, and the Southern Ocean covering a temperature range of 0.8 to 18°C were used to revise the Cibicidoides Mg/Ca-temperature calibration. The Mg/Ca-BWT relationship of three common Cibicidoides species is described by an exponential equation: Mg/Ca = 0.867 ± 0.049 exp (0.109 ± 0.007 * BWT) (stated errors are 95% CI). The temperature sensitivity is very similar to a previously published calibration. However, the revised calibration has a significantly different preexponential constant, resulting in different predicted absolute temperatures. We attribute this difference in the preexponential constant to an analytical issue of accuracy. Some genera, notably Uvigerina, show apparently lower temperature sensitivity than others, suggesting that the use of constant offsets to account for vital effects in Mg/Ca may not be appropriate. Downcore Mg/Ca reproducibility, as determined on replicate foraminiferal samples, is typically better than 0.1 mmol/mol (2 S.E.). Thus, considering the errors associated with the Cibicidoides calibration and the downcore reproducibility, BWT may be estimated to within ±1°C. Application of the revised core-top Mg/Ca-BWT data to Cenozoic foraminiferal Mg/Ca suggests that seawater Mg/Ca was not more than 35% lower than today in the ice-free ocean at 50 Ma.
Resumo:
Oxygen and carbon isotopic records have been developed for the Cenozoic carbonate oozes of Sites 752, 754, 756, and 757 based on the analysis of monospecific benthic foraminifers. The intent of this report is to provide a basic isotopic stratigraphy for use in other paleoceanographic studies. The oxygen isotope record displays the enrichments associated with cooling or ice volume buildup at the Eocene/Oligocene boundary, in the middle Miocene, and in the upper Pliocene. The carbon isotopic record contains the Chron 16 enrichment in the lower Miocene and the Chron 6 depletion in the uppermost Miocene.
Resumo:
Five delta13C records from the deep ocean, extending back to 1.3 Ma, were examined in order to constrain changes in mean ocean carbon isotope composition and thermohaline circulation over the 41- to 100-ka climate transition. These data show that significant perturbations in mean ocean carbon chemistry were associated with the mid-Pleistocene climate transition. Notable features of the last 1.3 Myr are (1) a pronounced ~0.3? decrease in mean ocean delta13C between 0.9 and 1.0 Myr, followed by a return to pre-1.0 Ma values by 400 ka B.P., which we propose was due to the onetime addition of isotopically depleted terrestrial carbon to the ocean, possibly associated with an increase in global aridity (and decrease in the size of the biosphere) across the 41- to 100-ka transition; (2) no change in the Atlantic-Pacific (A-P) delta13C gradient over the last 1.3 Myr, suggesting no change in mean ocean nutrient content accompanied the addition of light carbon; and (3) stronger vertical nutrient fractionation in the North Atlantic in the middle Pleistocene between sites 607 and 552, suggesting weaker North Atlantic Deep Water formation at this time relative to the early and late Pleistocene. We also find evidence for a more pronounced deep recirculation gyre in the western North Atlantic basin in the early Brunhes, as evidenced by "aging" of deep northern basin water (site 607) relative to deep water in the equatorial Atlantic (site 664).
Resumo:
Stable carbon and oxygen isotopes from benthic and planktic foraminifers, planktic foraminifer assemblages and ice rafted debris from the North Atlantic Site U1314 (Integrated Ocean Drilling Program Expedition 306) were examined to investigate orbital and millennial-scale climate variability in the North Atlantic and its impact on global circulation focusing on the development of glacial periods during the mid-Pleistocene (ca 800-400 ka). Glacial initiations were characterized by a rapid cooling (6-10 °C in less than 7 kyr) in the mean annual sea surface temperature (SST), increasing benthic d18O values and high benthic d13C values. The continuous increase in benthic d18O suggests a continuous ice sheet growth whereas the positive benthic d13C values indicate that the flow of the Iceland Scotland Overflow water (ISOW) was vigorous. Strong deep water formation in the Norwegian Greenland Sea promoted a high transfer of freshwater from the ocean to the continents. However, low SSTs at Site U1314 suggest a subpolar gyre cooling and freshening that may have reduced deep water formation in the Labrador Sea during glacial initiations. Once the 3.5 per mil threshold in the benthic d18O record was exceeded, ice rafting started and ice sheet growth was punctuated by millennial-scale waning events which returned to the ocean part of the freshwater accumulated on the continents. Ice-rafting events were associated with a rapid reduction in the ISOW (benthic d13C values dropped 0.5-1 per mil) and followed by millennial-scale warmings. The first two millennial-scale warm intervals of each glacial period reached interglacial temperatures and were particularly abrupt (6-10 °C in ~3 kyr). Subsequent millennial-scale warm events were cooler probably because the AMOC was rather reduced as suggested by the low benthic d13C values. These two abrupt warming events that occurred at early glacial periods were also observed in the Antarctic temperature and CO2 records, suggesting a close correlation between both Hemispheres. The comparison of the sea surface proxies with the benthic d18O record (as the Southern sign) indicates the presence of a millennial-scale seesaw pattern similar to that seen during the Last Glacial period.
Resumo:
Global cooling and the development of continental-scale Antarctic glaciation occurred in the late middle Eocene to early Oligocene (~38 to 28 million years ago), accompanied by deep-ocean reorganization attributed to gradual Antarctic Circumpolar Current (ACC) development. Our benthic foraminiferal stable isotope comparisons show that a large d13C offset developed between mid-depth (~600 meters) and deep (>1000 meters) western North Atlantic waters in the early Oligocene, indicating the development of intermediate-depth d13C and O2 minima closely linked in the modern ocean to northward incursion of Antarctic Intermediate Water. At the same time, the ocean's coldest waters became restricted to south of the ACC, probably forming a bottom-ocean layer, as in the modern ocean. We show that the modern four-layer ocean structure (surface, intermediate, deep, and bottom waters) developed during the early Oligocene as a consequence of the ACC.