854 resultados para record values


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen and carbon isotopic records of monogeneric and monospecific benthic and planktonic foraminifer samples from Sites 744 and 738 drilled on the southern end of the Kerguelen Plateau during ODP Leg 119 reveal the evolution of polar Indian Ocean water masses from the early Paleocene to the middle Miocene. Results from Site 738 are from sediments of early Paleocene to late Eocene age and those from Site 744 are late Eocene to middle Miocene. They suggest that intermediate waters at this location did not originate in the high latitudes during the early Eocene. Surface and near-surface waters cooled gradually after the maximum warming at 56 Ma, when surface waters were about 18°C. Intermediate waters cooled after 52 Ma. The highest temperatures (lowest d18O values) of the Cenozoic occurred from 56 to 52 Ma. The records of equatorial Pacific Site 577 and Weddell Sea Site 690 resemble that of the polar Indian Ocean in this interval. The well-documented d13C excursions toward positive values in the late Paleocene and negative values in the early Eocene are represented by foraminifers increases of 1.5 per mil and following decreases of about 3 per mil. Most of the cooling in the Paleogene occurred in the middle and late Eocene. A 2°C decrease of surface water at about 38.4 Ma heralded the beginning of extensive glacial conditions in Antarctica in the early Oligocene. At Site 744, the global d18O shift just above the Eocene/Oligocene boundary is 1.15 per mil, and occurred gradually in sediments dated at 36.5-35.9 Ma. Ice-rafted debris was deposited beginning at 36.1 Ma for about the next 2 m.y. This simultaneous occurrence of the global d18O shift with ice-rafted debris is evidence for early Oligocene glaciation in East Antarctica. Moreover, early and late Oligocene Cibicidoides d18O values between 2 and 2.2 per mil indicate intermediate water cooling and a small ice-volume effect. Production of cold dense bottom water in Antarctica was intensified with continental cooling and glaciation in the early Oligocene. Comparison of Oligocene and early Miocene isotopic data from high-latitude and low-latitude deepsea sites indicates that there were probably at least two sources of bottom waters at this time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydraulic piston coring at DSDP Site 548, on the upper continental slope southwest of Ireland, recovered a nearly complete Pliocene section spanning 103 m of sediment. The sediments are greenish gray carbonate-rich hemipelagites containing abundant nannofossils and foraminifers. Grain-size analysis demonstrates that the texture of the section is fairly constant, with most of the variation occurring in 63- to 32-µm and < 2-µm fractions. Previous research has shown that the middle-to-late Pliocene transition in the North Atlantic was marked by the appearance of the planktonic foraminiferal species Globorotalia inflata and by the first occurrence of significant quantities of ice-rafted sediment grains in deep-sea sediments. The latter is taken to represent the first important development of Northern Hemisphere glaciation. The first appearance of G. inflata is carefully documented for Site 548 and is demonstrated to be an evolutionary datum at this site, rather than an ecologically controlled first appearance. Surface ocean conditions represented in the sediment section spanning the appearance of G. inflata were strongly cyclic, resulting in large periodic changes in the abundances of Globorotalia puncticulata and N. acostaensis. The benthic foraminiferal population was studied in detail over the middle-to-upper Pliocene transition to establish the nature and behavior of the intermediate-depth water mass in the northeastern Atlantic at the time of ice-sheet growth in the Northern Hemisphere. This water mass is presently warm and saline, having its source in the Mediterranean Sea. The benthic data show that the intermediate-depth water mass was undergoing a series of progressive changes over the interval including the first appearance of G. inflata. These changes are particularly reflected in the relative abundances of Globocassidulina subglobosa (Brady), Uvigerina, and Ehrenbergina. Also, the mean size of individuals in the G. subglobosa populations shows systematic variation, indicating changing intermediate-depth water properties. Oxygen-isotope analyses show that the intermediate-depth water mass was cold during the middle-to-late Pliocene transition. This interpretation is supported by the relative abundances of benthic foraminiferal species. Hence, the intermediate-depth northeastern Atlantic water mass of the middle to late Pliocene was considerably different from the intermediate-depth water mass of the present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A late Quaternary pollen record from northern Sakhalin Island (51.34°N, 142.14°E, 15 m a.s.l.) spanning the last 43.7 ka was used to reconstruct regional climate dynamics and vegetation distribution by using the modern analogue technique (MAT). The long-term trends of the reconstructed mean annual temperature (TANN) and precipitation (PANN), and total tree cover are generally in line with key palaeoclimate records from the North Atlantic region and the Asian monsoon domain. TANN largely follows the fluctuations in solar summer insolation at 55°N. During Marine Isotope Stage (MIS) 3, TANN and PANN were on average 0.2 °C and 700 mm, respectively, thus very similar to late Holocene/modern conditions. Full glacial climate deterioration (TANN = -3.3 °C, PANN = 550 mm) was relatively weak as suggested by the MAT-inferred average climate parameters and tree cover densities. However, error ranges of the climate reconstructions during this interval are relatively large and the last glacial environments in northern Sakhalin could be much colder and drier than suggested by the weighted average values. An anti-phase relationship between mean temperature of the coldest (MTCO) and warmest (MTWA) month is documented during the last glacial period, i.e. MIS 2 and 3, suggesting more continental climate due to sea levels that were lower than present. Warmest and wettest climate conditions have prevailed since the end of the last glaciation with an optimum (TANN = 1.5 °C, PANN = 800 mm) in the middle Holocene interval (ca 8.7-5.2 cal. ka BP). This lags behind the solar insolation peak during the early Holocene. We propose that this is due to continuous Holocene sea level transgression and regional influence of the Tsushima Warm Current, which reached maximum intensity during the middle Holocene. Several short-term climate oscillations are suggested by our reconstruction results and correspond to Northern Hemisphere Heinrich and Dansgaard-Oeschger events, the Bølling-Allerød and the Younger Dryas. The most prominent fluctuation is registered during Heinrich 4 event, which is marked by noticeably colder and drier conditions and the spread of herbaceous taxa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mineral component of pelagic sediments recovered from the Indian Ocean provides both a history of eolian deposition related to climatic changes in southern Africa and a record of terrigenous input related to sediment delivery from the Himalayas. A composite Cenozoic dust flux record from four sites in the central Indian Ocean is used to define the evolution of the Kalahari and Namib desert source regions. The overall record of dust input is one of very low flux for much of the Cenozoic indicating a long history of climate stability and regional hyperaridity. The most significant reduction in dust flux occurred near the Paleocene/Eocene boundary and is interpreted as a shift from semiarid climates during the Paleocene to more arid conditions in the early Eocene. Further aridification is recorded as stepwise reductions in the input of dust material which occur from about 35 to 40 Ma, 27 to 32 Ma, and 13 to 15 Ma and correlate to significant enrichments in benthic foraminifer delta18O values. The mineral flux in sediments from the northern Indian Ocean, site 758, records changes in the terrigenous input apparently related to the erosion of the Himalayas and indicates a rapid late Cenozoic uplift history. Three major pulses of increased terrigeneous sediment flux are inferred from the depositional record. The initial increase began at about 9.5 Ma and continued for roughly 1.0 million years. A second pulse with approximately the same magnitude occurred from about 7.0 to 5.6 Ma. The largest pulse of enhanced terrigenous influx occurred during the Pliocene from about 3.9 to 2.0 Ma when average flux values were severalfold greater than at any other time in the Cenozoic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the seminal work by Hays et al. (1976), a plethora of studies has demonstrated a correlation between orbital variations and climatic change. However, information on how changes in orbital boundary conditions affected the frequency and amplitude of millennial-scale climate variability is still fragmentary. The Marine Isotope Stage (MIS) 19, an interglacial centred at around 785 ka, provides an opportunity to pursue this question and test the hypothesis that the long-term processes set up the boundary conditions within which the short-term processes operate. Similarly to the current interglacial, MIS 19 is characterised by a minimum of the 400-kyr eccentricity cycle, subdued amplitude of precessional changes, and small amplitude variations in insolation. Here we examine the record of climatic conditions during MIS 19 using high-resolution stable isotope records from benthic and planktonic foraminifera from a sedimentary sequence in the North Atlantic (Integrated Ocean Drilling Program Expedition 306, Site U1313) in order to assess the stability and duration of this interglacial, and evaluate the climate system's response in the millennial band to known orbitally induced insolation changes. Benthic and planktonic foraminiferal d18O values indicate relatively stable conditions during the peak warmth of MIS 19, but sea-surface and deep-water reconstructions start diverging during the transition towards the glacial MIS 18, when large, cold excursions disrupt the surface waters whereas low amplitude millennial scale fluctuations persist in the deep waters as recorded by the oxygen isotope signal. The glacial inception occurred at ~779 ka, in agreement with an increased abundance of tetra-unsaturated alkenones, reflecting the influence of icebergs and associated meltwater pulses and high-latitude waters at the study site. After having combined the new results with previous data from the same site, and using a variety of time series analysis techniques, we evaluate the evolution of millennial climate variability in response to changing orbital boundary conditions during the Early-Middle Pleistocene. Suborbital variability in both surface- and deep-water records is mainly concentrated at a period of ~11 kyr and, additionally, at ~5.8 and ~3.9 kyr in the deep ocean; these periods are equal to harmonics of precession band oscillations. The fact that the response at the 11 kyr period increased over the same interval during which the amplitude of the response to the precessional cycle increased supports the notion that most of the variance in the 11 kyr band in the sedimentary record is nonlinearly transferred from precession band oscillations. Considering that these periodicities are important features in the equatorial and intertropical insolation, these observations are in line with the view that the low-latitude regions play an important role in the response of the climate system to the astronomical forcing. We conclude that the effect of the orbitally induced insolation is of fundamental importance in regulating the timing and amplitude of millennial scale climate variability.