703 resultados para oligotrophic
Resumo:
Total concentrations of algal pigments, organic C, C, N, P and S were determined in surface sediments from the littoral zone of 21 lakes in ice-free areas of northern Victoria Land (Antarctica) with different climatic and environmental conditions. Concentrations of major ions and nutrients were also determined in water samples from the same lakes. The latter samples had extremely variable chemical compositions; however, all the lakes resulted oligotrophic. Pigment concentrations in surface sediments were comparable to those reported for other Antarctic lakes and lower than those in oligotrophic lakes at lower latitudes. Cyanophyta, Chlorophyta and Bacillariophyta were the main taxa identified. These taxa correspond to those reported in previous microscopy-based studies on Antarctic phytoplankton and phytobenthos. Discriminant Function Analysis and Canonical Correspondence Analysis of data indicate that the distribution of pigments in these Victoria Land lakes depends mainly on their geographical location (particularly the distance from the sea) and nutrient status.
Resumo:
It has been shown that in the Sevastopol Bay during the year primary production and chlorophyll "a" created by picoplankton (0.45-2.5 µm) consisted on the average 20-44% of total production. It was approximately a half of the level for oligotrophic waters of the ocean. Picoplankton of waters studied is represented by eucaryotes, cell diameter of which is, as a rule, about 2-3 µm. Contribution of the finest fraction of phytoplankton (0.43-0.85 µm) to primary production and con¬tent of chlorophyll "a" was insignificant (0-4%).
Resumo:
The efficiency of the biological pump of carbon to the deep ocean depends largely on the biologically mediated export of carbon from the surface ocean and its remineralization with depth. Global satellite studies have primarily focused on chlorophyll concentration and net primary production (NPP) to understand the role of phytoplankton in these processes. Recent satellite retrievals of phytoplankton composition now allow for the size of phytoplankton cells to be considered. Here, we improve understanding of phytoplankton size structure impacts on particle export, remineralization and transfer. Particulate organic carbon (POC) flux observations from sediment traps and 234Th are compiled across the global ocean. Annual climatologies of NPP, percent microplankton, and POC flux at four time series locations and within biogeochemical provinces are constructed, and sinking velocities are calculated to align surface variables with POC flux at depth. Parameters that characterize POC flux vs. depth (export flux ratio, labile fraction, remineralization length scale) are then fit to the aligned dataset. Times of the year dominated by different size compositions are identified and fit separately in regions of the ocean where phytoplankton cell size showed enough dynamic range over the annual cycle. Considering all data together, our findings support the paradigm of high export flux but low transfer efficiency in more productive regions and vice versa for oligotrophic regions. However, when parsing by dominant size class, we find periods dominated by small cells to have both greater export flux and lower transfer efficiency than periods when large cells comprise a greater proportion of the phytoplankton community.
Resumo:
Faunal analyses of planktonic foraminifera and upper-water temperature reconstructions with the modern analog technique are studied and compared to themagnetic susceptibility and gamma ray logs of ODP Core 999A (western Caribbean) for the past 560 kyr in order to explore changes in paleoceanographic conditions in the western Caribbean Sea. Long-term trends in the percentage abundance of planktonic foraminifera inODP Core 999Asuggest two hydrographic scenarios: before and after 480 ka.High percentage abundances of Neogloboquadrina pachyderma and Globorotalia inflata, low abundances of Globorotalia menardii and Globorotalia truncatulinoides, low diversity, and sea-surface temperatures (SST) under 24 °C are typical characteristics occurring from 480 to 560 ka. These characteristics suggest a "shallow" well-oxygenated upper thermocline and the influx of nutrients by either seasonal upwelling plumes and/or eddy-mediated entrainment. The second scenario occurred after 480 ka, and it is characterized by high and fluctuating percentage abundances of Neogloboquadrina dutertrei, G. truncatulinoides, G. menardii, Globigerinita glutinata, Globigerinella siphonifera, and Globigerinoides ruber; a declining trend in diversity; and large SSTs. These characteristics suggest a steady change from conditions characterized by a "shallow" thermocline and chlorophyll maximum to conditions characterized by a "deep" thermocline (mainly during glacial stages) and by more oligotrophic conditions. The influence of the subtropical North Atlantic on the upper thermocline was apparently larger during glacial stages, thus favoring a deepening of the thermocline, an increase in sea-surface salinity, and a dramatic reduction of nutrients in the Guajira upwelling system. During interglacial stages, the influx of nutrients from the Magdalena River is stronger, thus resulting in a deep chlorophyll maximumand a fresher upper ocean. The eddy entrainment of nutrients is the probable mechanism responsible of transport from the Guajira upwelling and Magdalena River plumes into ODP 999A site.
Resumo:
Here we present results of the first comprehensive study of sulphur compounds and methane in the oligotrophic tropical West Pacific Ocean. The concentrations of dimethylsuphide (DMS), dimethylsulphoniopropionate (DMSP), dimethylsulphoxide (DMSO), and methane (CH4), as well as various phytoplankton marker pigments in the surface ocean were measured along a north-south transit from Japan to Australia in October 2009. DMS (0.9 nmol/l), dissolved DMSP (DMSPd, 1.6 nmol/l) and particulate DMSP (DMSPp, 2 nmol/l) concentrations were generally low, while dissolved DMSO (DMSOd, 4.4 nmol/l) and particulate DMSO (DMSOp, 11.5 nmol/l) concentrations were comparably enhanced. Positive correlations were found between DMSO and DMSP as well as DMSP and DMSO with chlorophyll a, which suggests a similar source for both compounds. Similar phytoplankton groups were identified as being important for the DMSO and DMSP pool, thus, the same algae taxa might produce both DMSP and DMSO. In contrast, phytoplankton seemed to play only a minor role for the DMS distribution in the western Pacific Ocean. The observed DMSPp : DMSOp ratios were very low and seem to be characteristic of oligotrophic tropical waters representing the extreme endpoint of the global DMSPp : DMSOp ratio vs. SST relationship. It is most likely that nutrient limitation and oxidative stress in the tropical West Pacific Ocean triggered enhanced DMSO production leading to an accumulation of DMSO in the sea surface. Positive correlations between DMSPd and CH4, as well as between DMSO (particulate and total) and CH4, were found along the transit. We conclude that both DMSP and DMSO serve as substrates for methanogenic bacteria in the western Pacific Ocean.