638 resultados para iron (0)
Resumo:
Iron solubility measurements in the Mauritanian upwelling and the adjacent Open Ocean of the Tropical Atlantic show for all stations lower values in the surface mixed layer than at depth below the pycnocline. We attribute this distribution to a combination of loss terms, chiefly photo-oxidation of organic ligands in the surface, and supply terms, predominantly from the release of ligands from the decomposition of organic matter. Significant correlations with pH, oxygen and phosphate for all samples below the surface mixed layer indicate that biogenic remineralisation of organic matter results in the release of iron binding ligands into the dissolved phase. The comparison of the cFeS/PO4**3- ratio with other published data from intermediate and deep waters in the Pacific suggests an enhanced release of iron chelators in the more productive Mauritanian upwelling zone.
Resumo:
Iron speciation was determined in hemiplegic sediments from a high productivity area to investigate systematically the early diagenetic reactivity of Fe. A combination of various leaching agents (1 M HCI, dithionite buffered in citrate/acetic acid, HF/H2SO4, acetic Cr(II)) was applied to sediment and extracted more than 80% of total Fe. Subsequent Fe species determination defined specific mineral fractions that are available for Fe reduction and fractions formed as products of Fe diagenesis. To determine the Fe speciation of (sheet) silicates we explored an extraction procedure (HF/H2SO4) and verified the procedure by application to standard rocks. Variations of Fe speciation of (sheet) silicates reflect the possible formation of Fe-bearing silicates in near surface sediments. The same fraction indicates a change in the primary input at greater depth, which is supported by other parameters. The Fe(II)/ Fe(III) -ratio of total sediment determined by extractions was compared with Mössbauer-spectroscopy ] at room temperature and showed agreement within 10%. M6ssbauer-spectroscopy indicates the occurrence of siderite in the presence of free sulfide and pyrite, supporting the importance of microenvironments during mineral formation. The occurrence of other Fe(II) bearing minerals such as ankerite (Ca-, Fe-, Mg-carbonate) can be presumed but remains speculative.
Resumo:
Iron availability in seawater, namely the concentration of dissolved inorganic iron ([Fe']), is affected by changes in pH. Such changes in the availability of iron should be taken into account when investigating the effects of ocean acidification on phytoplankton ecophysiology because iron plays a key role in phytoplankton metabolism. However, changes in iron availability in response to changes in ocean acidity are difficult to quantify specifically using natural seawater because these factors change simultaneously. In the present study, the availability of iron and carbonate chemistry were manipulated individually and simultaneously in the laboratory to examine the effect of each factor on phytoplankton ecophysiology. The effects of various pCO2 conditions (390, 600, and 800 µatm) on the growth, cell size, and elemental stoichiometry (carbon [C], nitrogen [N], phosphorus [P], and silicon [Si]) of the diatom Thalassiosira weissflogii under high iron ([Fe'] = 240 pmol/l) and low iron ([Fe'] = 24 pmol/l) conditions were investigated. Cell volume decreased with increasing pCO2, whereas intracellular C, N, and P concentrations increased with increasing pCO2 only under high iron conditions. Si:C, Si:N, and Si:P ratios decreased with increasing pCO2. It reflects higher production of net C, N, and P with no corresponding change in net Si production under high pCO2 and high iron conditions. In contrast, significant linear relationships between measured parameters and pCO2 were rarely detected under low iron conditions. We conclude that the increasing CO2 levels could affect on the biogeochemical cycling of bioelements selectively under the iron-replete conditions in the coastal ecosystems.
Resumo:
Partial pressure of CO2 (pCO2) and iron availability in seawater show corresponding changes due to biological and anthropogenic activities. The simultaneous change in these factors precludes an understanding of their independent effects on the ecophysiology of phytoplankton. In addition, there is a lack of data regarding the interactive effects of these factors on phytoplankton cellular stoichiometry, which is a key driving factor for the biogeochemical cycling of oceanic nutrients. Here, we investigated the effects of pCO2 and iron availability on the elemental composition (C, N, P, and Si) of the diatom Pseudo-nitzschia pseudodelicatissima (Hasle) Hasle by dilute batch cultures under 4 pCO2 (~200, ~380, ~600, and ~800 µatm) and five dissolved inorganic iron (Fe'; ~5, ~10, ~20, ~50, and ~100 pmol /L) conditions. Our experimental procedure successfully overcame the problems associated with simultaneous changes in pCO2 and Fe' by independently manipulating carbonate chemistry and iron speciation, which allowed us to evaluate the individual effects of pCO2 and iron availability. We found that the C:N ratio decreased significantly only with an increase in Fe', whereas the C:P ratio increased significantly only with an increase in pCO2. Both Si:C and Si:N ratios decreased with increasing pCO2 and Fe'. Our results indicate that changes in pCO2 and iron availability could influence the biogeochemical cycling of nutrients in future oceans with high- CO2 levels, and, similarly, during the time course of phytoplankton blooms. Moreover, pCO2 and iron availability may also have affected oceanic nutrient biogeochemistry in the past, as these conditions have changed markedly over the Earth's history.
Resumo:
We report iron measurements for water column and aerosol samples collected in the Sargasso Sea during July-August 2003 (summer 2003) and April-May 2004 (spring 2004). Our data reveal a large seasonal change in the dissolved iron (dFe) concentration of surface waters in the Bermuda Atlantic Time-series Study region, from ~1-2 nM in summer 2003, when aerosol iron concentrations were high (mean 10 nmol/m**3), to ~0.1-0.2 nM in spring 2004, when aerosol iron concentrations were low (mean 0.64 nmol/m**3). During summer 2003, we observed an increase of ~0.6 nM in surface water dFe concentrations over 13 days, presumably due to eolian iron input; an estimate of total iron deposition over this same period suggests an effective solubility of 3-30% for aerosol iron. Our summer 2003 water column profiles show potentially growth-limiting dFe concentrations (0.02-0.19 nM) coinciding with a deep chlorophyll maximum at 100-150 m depth, where phytoplankton biomass is typically dominated by Prochlorococcus during late summer.
Resumo:
Distriburtion and formation of clay minerals in different types of bottom sediments from the West Pacific are under consideration.