286 resultados para content and language interated learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Cenomanian/Turonian (C/T) intervals at DSDP Sites 105 and 603B from the northern part of the proto-North Atlantic show high amplitude, short-term cyclic variations in total organic carbon (TOC) content. The more pronounced changes in TOC are also reflected by changes in lithology from green claystones (TOC<1%) to black claystones (TOC>1%). Although their depositional history was different, the individual TOC cycles at Sites 105 and 603B can be correlated using stable carbon isotope stratigraphy. Sedimentation rates obtained from the isotope stratigraphy and spectral analyses indicate that these cycles were predominately precession controlled. The coinciding variations in HI, OI, delta13Corg and the abundance of marine relative to terrestrial biomarkers, as well as the low abundance of lignin pyrolysis products generated from the kerogen of the black claystones, indicate that these cyclic variations reflect changes in the contribution of marine organic matter (OM). The cooccurrence of lamination, enrichment of redox-sensitive trace metals and presence of molecular fossils of pigments from green sulfur bacteria indicate that the northern proto-North Atlantic Ocean water column was periodically euxinic from the bottom to at least the base of the photic zone (<150 m) during the deposition of the black claystones. In contrast, the green claystones are bioturbated, are enriched in Mn, do not show enrichments in redox-sensitive trace metals and show biomarker distributions indicative of long oxygen exposure times, indicating more oxic water conditions. At the same time, there is evidence (e.g., abundance of biogenic silica and significant 13C-enrichment for OC of phytoplanktic origin) for enhanced primary productivity during the deposition of the black claystones. We propose that increased primary productivity periodically overwhelmed the oxic OM remineralisation potential of the bottom waters resulting in the deposition of OM-rich black claystones. Because the amount of oxygen used for OM remineralisation exceeded the amount supplied by diffusion and deep-water circulation, the northern proto-North Atlantic became euxinic during these periods. Both Sites 105 and 603B show trends of continually increasing TOC contents and HI values of the black claystones up section, which most likely resulted from both enhanced preservation due to increased anoxia and increased production of marine OM during oceanic anoxic event 2 (OAE2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colluvial deposits consisting of silts and loams were detected in several climatologically different areas of NE Tibet (3200-3700 m a.s.l.). Layering, distinct organic content and low content of coarse matter as well as location in the relief revealed an origin from low-energy slope erosion (hillwash). Underlying and intercalated paleosols were classified as Chernozems, Phaeozems, Regosols and Fluvisols. Fifteen radiocarbon datings predominant on charcoal from both colluvial layers and paleosols yielded ages between 8988 ± 66 and 3512 ± 56 uncal BP. Natural or anthropogenic factors could have been the triggers of the erosional processes derived. It remains unclear which reason was mainly responsible, due to controversial paleoclimatic and geomorphic records as well as insufficient archaeological knowledge from this region. Determinations of charcoal and fossil wood revealed the Holocene occurrence of tree species (spruce, juniper) for areas which nowadays have no trees or only few forest islands. Thus large areas of NE Tibet which are at present steppes and alpine pastures were forested in the past.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present three new benthic foraminiferal delta13C, delta18O, and total organic carbon time series from the eastern Atlantic sector of the Southern Ocean between 41°S and 47°S. The measured glacial delta13C values belong to the lowest hitherto reported. We demonstrate a coincidence between depleted late Holocene (LH) delta13C values and positions of sites relative to ocean surface productivity. A correction of +0.3 to +0.4 [per mil VPDB] for a productivity-induced depletion of Last Glacial Maximum (LGM) benthic delta13C values of these cores is suggested. The new data are compiled with published data from 13 sediment cores from the eastern Atlantic Ocean between 19°S and 47°S, and the regional deep and bottom water circulation is reconstructed for LH (4-0 ka) and LGM (22-16 ka) times. This extends earlier eastern Atlantic-wide synoptic reconstructions which suffered from the lack of data south of 20°S. A conceptual model of LGM deep-water circulation is discussed that, after correction of southernmost cores below the Antarctic Circumpolar Current (ACC) for a productivity-induced artifact, suggests a reduced formation of both North Atlantic Deep Water in the northern Atlantic and bottom water in the southwestern Weddell Sea. This reduction was compensated for by the formation of deep water in the zone of extended winter sea-ice coverage at the northern rim of the Weddell Sea, where air-sea gas exchange was reduced. This shift from LGM deep-water formation in the region south of the ACC to Holocene bottom water formation in the southwestern Weddell Sea, can explain lower preformed d13CDIC values of glacial circumantarctic deep water of approximately 0.3 per mil to 0.4 per mil. Our reconstruction brings Atlantic and Southern Ocean d13C and Cd/Ca data into better agreement, but is in conflict, however, with a scenario of an essentially unchanged thermohaline deep circulation on a global scale. Benthic delta18O-derived LGM bottom water temperatures, by 1.9°C and 0.3°C lower than during the LH at deepest southern and shallowest northern sites, respectively, agree with the here proposed reconstruction of deep-water circulation in the eastern South Atlantic Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation of stable isotope (d13C TOC and d15N TN) and elemental parameters (TOC, TN contents and TOC/TN ratios) of bulk organic matter (<200 µm) from sediment cores recovered from the Patagonian lake Laguna Potrok Aike (Argentina) in the framework of the ICDP deep drilling project PASADO provided insights into past changes in lake primary productivity and environmental conditions in South Patagonia throughout the last Glacial-Interglacial transition. Stratigraphically constrained cluster analyses of all proxy parameters suggest four main phases. From ca 26,100 to 17,300 cal. years BP, lacustrine phytoplankton was presumably the predominant organic matter source in an aquatic environment with low primary productivity rates. At around 17,300 cal. years BP, abrupt and distinct shifts of isotopic and elemental values indicate that the lacustrine system underwent a rapid reorganization. Lake primary productivity (phytoplankton and aquatic macrophytes) shows higher levels albeit with large variations during most of the deglaciation until 13,000 cal. years BP. The main causes for this development can be seen in improved growing conditions for primary producers because of deglacial warming in combination with expedient availability of nutrients and likely calm wind conditions. After 13,000 cal. years BP, decreased d13C TOC values, TOC, TN contents and TOC/TN ratios indicate that the lake approached a new state with reduced primary productivity probably induced by unfavourable growing conditions for primary producers like strengthened winds and reduced nutrient availability. The steady increase in d15N TN values presumably suggests limitation of nitrate supply for growth of primary producers resulting from a nutrient shortage after the preceding phase with high productivity. Nitrate limitation and consequent decreased lacustrine primary productivity continued into the early Holocene (10,970-8400 cal. years BP) as reflected by isotopic and elemental values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site 996 is located above the Blake Diapir where numerous indications of vertical fluid migration and the presence of hydrate existed prior to Ocean Drilling Program (ODP) Leg 164. Direct sampling of hydrates and visual observations of hydrate-filled veins that could be traced 30-40 cm along cores suggest a connection between fluid migration and hydrate formation. The composition of pore water squeezed from sediment cores showed large variations due to melting of hydrate during core recovery and influence of saline water from the evaporitic diapir below. Analysis of water released during hydrate decomposition experiments showed that the recovered hydrates contained significant amounts of pore water. Solutions of the transport equations for deuterium (d2H) and chloride (Cl-) were used to determine maximum (d2H) and minimum (Cl-) in situ concentrations of these species. Minimum in situ concentrations of hydrate were estimated by combining these results with Cl- and d2H values measured on hydrate meltwaters and pore waters obtained by squeezing of sediments, by the means of a method based on analysis of distances in the two-dimensional Cl- d2H space. The computed Cl- and d2H distribution indicates that the minimum hydrate amount solutions are representative of the actual hydrate amount. The highest and mean hydrate concentrations estimates from our model are 31% and 10% of the pore space, respectively. These concentrations agree well with visual core observations, supporting the validity of the model assumptions. The minimum in situ Cl- concentrations were used to constrain the rates of upward fluid migration. Simulation of all available data gave a mean flow rate of 0.35 m/k.y. (range: 0.125-0.5 m/k.y.).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The textural and compositional characteristics of the 400 m sequence of Pleistocene wackestones and packstones intersected at Ocean Drilling Program (ODP) Site 820 reflect deposition controlled by fluctuations in sea-level, and by variations in the rate of sediment supply. The development of an effective reefal barrier adjacent to Site 820, between 760 k.y. and 1.01 Ma, resulted in a marked reduction in sediment accumulation rates on the central Great Barrier Reef outermost shelf and upper slope. This marked change corresponds with the transition from sigmoidal prograding seismic geometry in the lower 254 m of the sequence, to aggradational geometry in the top 146 m. The reduction in the rate of sediment accumulation that followed development of the reefal barrier also caused a fundamental change in the way in which fluctuations in sea-level controlled sediment deposition. In the lower, progradational portion of the sequence, sea-level cyclicity is represented by superimposed coarsening-upward cycles. Although moderately calcareous throughout (mostly 35%-75% CaCO3), the depositional system acted in a similar manner to siliciclastic shelf depositional systems. Relative sea-level rises resulted in deposition of more condensed, less calcareous, fine, muddy wackestones at the base of each cycle. Sea-level highstands resulted in increased sedimentation rates and greater influx of coarse bioclastic material. Continued high rates of sedimentation of both coarse bioclastic material and mixed carbonate and terrigenous mud marked falling and low sea-levels. This lower part of the sequence therefore is dominated by coarse packstones, with only thin wackestone intervals representing transgressions. In contrast, sea-level fluctuations following formation of an effective reefal barrier produced a markedly different sedimentary record. The more slowly deposited aggradational sequence is characterized by discrete thin interbeds of relatively coarse packstone within a predominantly fine wackestone sequence. These thin packstone beds resulted from relatively low sedimentation rates during falling and low sea-levels, with much higher rates of muddy sediment accumulation during rising and high sea-levels. The transition from progradational to aggradational sequence geometry therefore corresponds to a transition from a "siliciclastic-type" to a "carbonate-type" depositional system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical composition of organic matter (Corg, Norg, d13C, d1SN, and n-alkanes) was studied in the top layer of bottom sediments of the East Siberian Sea. Possible ways were proposed to estimate the amount of the terrigenous component in their organic matter (OM). The fraction of terrigenous OM estimated by the combined use of genetic indicators varied from 15% in the eastern part of the sea, near the Long Strait, to 95% in the estuaries of the Indigirka and Kolyma rivers, averaging 62% over the sea area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin of three Red Sea submarine brine pools was investigated by analysis of the S and O isotope ratios of dissolved sulfate and Sr isotope ratios of dissolved Sr in the brines. Sulfur and O isotope ratios of sulfate and Sr isotope ratios of evaporitic source rocks for the brines were measured for comparison. The S, O and Sr isotope ratios of evaporites recovered from DSDP site 227 are consistent with an upper Miocene evaporites age. The Valdivia Deep brine formed by karstic dissolution of Miocene evaporites by overlying seawater and shows no signs of hydrothermal input. The Suakin Deep brines are derived from, or have isotopically exchanged with Miocene or older evaporites. There has been only minor dilution of the brine by overlying seawater. Strontium isotope ratios of Suakin brine may indicate addition of a minor (15%) amount of volcanic Sr to the brine, but there is no evidence of high temperature brine-rock interaction. The sulfate in the Atlantis II brine was apparently derived from seawater. The O isotope ratio of sulfate in the present Atlantis II brine could reflect isotopic exchange between seawater sulfate and the brine at approximately 255°C. Approximately 30% of the Sr in the Atlantis II brine is derived from the underlying basalt, probably by hydrothermal leaching. Atlantis II brine is the only known example from the Red Sea which has a significant high-temperature hydrothermal history.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microorganisms inhabit very different soil habitats in the ice-free areas of Antarctica, playing a major role in nutrient cycling in cold environments. We studied the soil characteristics and the dominant bacterial composition from nine different soil profiles located on Livingston Island (maritime Antarctica). The total carbon (TC) and total nitrogen (TN) values were high for the vegetated soils, decreasing with depth, whereas the values for the mineral soils were generally low. Soil pH was more acidic for moss-covered soils and neutral to alkaline for mineral soils. Numbers of culturable heterotrophic bacteria were higher at vegetated sites, but significant numbers were also detectable in carbon-depleted soils. Patterns of denaturing gradient gel electrophoresis (DGGE) revealed a highly heterogeneous picture throughout the soil profiles. Subsequent sequencing of DGGE bands revealed in total 252 sequences that could be assigned to 114 operational taxonomic units, showing the dominance of members of the Bacteroidetes and Acidobacteria. The results of phospholipid fatty acid analysis showed a lack of unsaturated fatty acids for most of the samples. Samples with a prevalence of unsaturated over saturated fatty acids were restricted to several surface samples. Statistical analysis showed that the dominant soil bacterial community composition is most affected by TC and TN contents and soil physical factors such as grain size and moisture, but not pH. Keywords

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) was isolated with XAD-2 and 4 resins from different water masses of the Greenland Sea and Fram Strait. The contribution of XAD-extractable dissolved organic carbon (DOC), operationally defined as 'recalcitrant' or humic substances, to total DOC was in the range of 45 ± 9% in surface waters and 60 ± 6% in deep waters. The carbohydrate concentration and composition were determined using the l-tryptophan/sulfuric acid method (for the bulk carbohydrate concentration, TCHO) and high performance anion-exchange chromatography after sulfuric acid hydrolysis (for the distribution of total hydrolysable neutral sugars, THNS). Carbohydrates contributed up to 6.8% to both total and recalcitrant DOC. TCHO contribution to total DOC decreased with depth from on average 4.1 ± 1.2% in surface waters to 2.2 ± 1.0% in deep waters, whereas the THNS contribution was similar in both layers, accounting for 2.5 ± 1.6% (surface) and 2.4 ± 0.2% (at depth). TCHO contribution to XAD-extractable DOC also decreased with depth from 4.5 ± 1.7% to 2.1 ± 1.0%, whereas THNS contribution was almost constant, with yields of 0.5 ± 0.3% for surface samples and 0.6 ± 0.1% at depth. The molecular size distribution of the recalcitrant DOM showed for all fractions a clear trend towards small molecules in the deep sea. More than half of the XAD-extractable carbohydrates of surface samples and more than 70% of deep sea samples were found in the nonpolar fraction from XAD, which was eluted with methanol. Glucose was the dominant carbohydrate in the surface water samples, whereas in the deep sea the composition was more uniform. In the XAD extracts, the compositions were less variable than in the original samples. The neutral sugar composition, in particular glucose and the deoxysugars, is indicative of the diagenetic state of the extracted DOM. The molar ratio (fucose + rhamnose)/(arabinose + xylose) was lowest for deep sea extractable DOM, indicating a high contribution of material modified by microorganisms. The THNS composition and distribution reveal that "recalcitrant" carbohydrates are heteropolysaccharides, carbohydrate units incorporated into a framework of a highly nonpolar structure with a lack of functional groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative estimation of surface ocean productivity and bottom water oxygen concentration with benthic foraminifera was attempted using 70 samples from equatorial and North Pacific surface sediments. These samples come from a well defined depth range in the ocean, between 2200 and 3200 m, so that depth related factors do not interfere with the estimation. Samples were selected so that foraminifera were well preserved in the sediments and temperature and salinity were nearly uniform (T = 1.5° C; S = 34.6 per mil). The sample set was also assembled so as to minimize the correlation often seen between surface ocean productivity and bottom water oxygen values (r**2 = 0.23 for prediction purposes in this case). This procedure reduced the chances of spurious results due to correlations between the environmental variables. The samples encompass a range of productivities from about 25 to >300 gC m**-2 yr**-1, and a bottom water oxygen range from 1.8 to 3.5 ml/L. Benthic foraminiferal assemblages were quantified using the >62 µm fraction of the sediments and 46 taxon categories. MANOVA multivariate regression was used to project the faunal matrix onto the two environmental dimensions using published values for productivity and bottom water oxygen to calibrate this operation. The success of this regression was measured with the multivariate r? which was 0.98 for the productivity dimension and 0.96 for the oxygen dimension. These high coefficients indicate that both environmental variables are strongly imbedded in the faunal data matrix. Analysis of the beta regression coefficients shows that the environmental signals are carried by groups of taxa which are consistent with previous work characterizing benthic foraminiferal responses to productivity and bottom water oxygen. The results of this study suggest that benthic foraminiferal assemblages can be used for quantitative reconstruction of surface ocean productivity and bottom water oxygen concentrations if suitable surface sediment calibration data sets are developed and appropriate means for detecting no-analog samples are found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of methane and hydrogen sulfide concentrations in sediments of various basins of the Baltic Sea was investigated during 4 cruises in 1995 and 1996. Significant differences in the concentrations of both compounds were recorded between the basins and also between different areas within the Gotland Deep. High-methane sediments with distinctly increasing concentrations from the surface to deeper layers were distinguished from low-methane sediments without a clear gradient. Methane concentrations exhibited a fair correlation with the sediment accumulation rate, determined by measuring the total thickness of the post-Ancylus Holocene sequence on echosounding profiles in the Gotland Deep. Only weak correlations were observed with the content of organic matter in the surface layers of the sediments. Hydrogen sulfide concentrations in the sediments showed a positive correlation with methane concentrations, but, in contrast to methane concentrations, were strongly influenced by the transition from oxic to anoxic conditions in the water column between 1995 and 1996. Sediments in the deepest part of the Gotland Basin (>237 m water depth), covering an area of approximately 35 km**2, were characterized by especially high accumulation rates (>70 cm/ka) and high methane and hydrogen sulfide contents. Concentrations of these compounds decreased rapidly towards the slope of the basin.