266 resultados para Seawater Composition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate Thoracosphaera heimii. We observe a substantial reduction in growth rate, calcification and cyst stability of T. heimii under elevated pCO2. Furthermore, transcriptomic analyses reveal CO2 sensitive regulation of many genes, particularly those being associated to inorganic carbon acquisition and calcification. Stable carbon isotope fractionation for organic carbon production increased with increasing pCO2 whereas it decreased for calcification, which suggests interdependence between both processes. We also found a strong effect of pCO2 on the stable oxygen isotopic composition of calcite, in line with earlier observations concerning another T. heimii strain. The observed changes in stable oxygen and carbon isotope composition of T. heimii cysts may provide an ideal tool for reconstructing past seawater carbonate chemistry, and ultimately past pCO2. Although the function of calcification in T. heimii remains unresolved, this trait likely plays an important role in the ecological and evolutionary success of this species. Acting on calcification as well as growth, ocean acidification may therefore impose a great threat for T. heimii.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in environmental conditions, such as those caused by elevated carbon dioxide (CO2), potentially alter the outcome of competitive interactions between species. This study aimed to understand how elevated CO2 could influence competitive interactions between hard and soft corals, by investigating growth and photosynthetic activity of Porites cylindrica (a hard coral) under elevated CO2 and in the presence of another hard coral and two soft coral competitors. Corals were collected from reefs around Orpheus and Pelorus Islands on the Great Barrier Reef, Australia. They were then exposed to elevated pCO2 for 4 weeks with two CO2 treatments: intermediate (pCO2 648) and high (pCO2 1003) compared with a control (unmanipulated seawater) treatment (pCO2 358). Porites cylindrica growth did not vary among pCO2 treatments, regardless of the presence and type of competitors, nor was the growth of another hard coral species, Acropora cerealis, affected by pCO2 treatment. Photosynthetic rates of P. cylindrica were sensitive to variations in pCO2, and varied between the side of the fragment facing the competitors vs. the side facing away from the competitor. However, variation in photosynthetic rates depended on pCO2 treatment, competitor identity, and whether the photosynthetic yields were measured as maximum or effective photosynthetic yield. This study suggests that elevated CO2 may impair photosynthetic activity, but not growth, of a hard coral under competition and confirms the hypothesis that soft corals are generally resistant to elevated CO2. Overall, our results indicate that shifts in the species composition in coral communities as a result of elevated CO2 could be more strongly related to the individual tolerance of different species rather than a result of competitive interactions between species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uptake of anthropogenic CO2 by the oceans is altering seawater chemistry with potentially serious consequences for coral reef ecosystems due to the reduction of seawater pH and aragonite saturation state (omega arag). The objectives of this long-term study were to investigate the viability of two ecologically important reef-building coral species, massive Porites sp. and Stylophora pistilata, exposed to high pCO2(or low pH) conditions and to observe possible changes in physiologically related parameters as well as skeletal isotopic composition. Fragments of Porites sp. and S. pistilata were kept for 6-14 months under controlled aquarium conditions characterized by normal and elevated pCO2 conditions, corresponding to pHTvalues of 8.09, 7.49, and 7.19, respectively. In contrast with shorter, and therefore more transient experiments, the long experimental timescale achieved in this study ensures complete equilibration and steady state with the experimental environment and guarantees that the data provide insights into viable and stably growing corals. During the experiments, all coral fragments survived and added new skeleton, even at seawater omega arag <1, implying that the coral skeleton is formed by mechanisms under strong biological control. Measurements of boron (B), carbon (C) and oxygen (O) isotopic composition of skeleton, C isotopic composition of coral tissue and symbiont zooxanthellae, along with physiological data (such as skeletal growth, tissue biomass, zooxanthellae cell density and chlorophyll concentration) allow for a direct comparison with corals living under normal conditions and sampled simultaneously. Skeletal growth and zooxanthellae density were found to decrease, whereas coral tissue biomass (measured as protein concentration) and zooxanthellae chlorophyll concentrations increased under high pCO2 (low pH) conditions. Both species showed similar trends of delta11B depletion and delta18O enrichment under reduced pH, whereas the delta13C results imply species-specific metabolic response to high pCO2 conditions. The skeletal delta11B values plot above seawater delta11B vs. pH borate fractionation curves calculated using either the theoretically derived deltaB value of 1.0194 (Kakihana et al., Bull. Chem. Soc. Jpn. 50(1977), 158) or the empirical deltaB value of 1.0272 (Klochko et al., EPSL 248 (2006), 261). However, the effective deltaB must be greater than 1.0200 in order to yield calculated coral skeletal delta11B values for pH conditions where omega arag >1. The delta11B vs. pH offset from the literature seawater delta11B vs. pH fractionation curves suggests a change in the ratio of skeletal material laid down during dark and light calcification and/or an internal pH regulation, presumably controlled by ion-transport enzymes. Finally, seawater pH significantly influences skeletal delta13C and delta18O. This must be taken into consideration when reconstructing paleo-environmental conditions from coral skeleton

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arctic Ocean and its associated ecosystems face numerous challenges over the coming century. Increasing atmospheric CO2 is causing increasing warming and ice melting as well as a concomitant change in ocean chemistry ("ocean acidification"). As temperature increases it is expected that many temperate species will expand their geographic distribution northwards to follow this thermal shift; however with the addition of ocean acidification this transition may not be so straightforward. Here we investigate the potential impacts of ocean acidification and climate change on populations of an intertidal species, in this case the barnacle Semibalanus balanoides, at the northern edge of its range. Growth and development of metamorphosing post-larvae were negatively impacted at lower pH (pH 7.7) compared to the control (pH 8.1) but were not affected by elevated temperature (+4 °C). The mineral composition of the shells did not alter under any of the treatments. The combination of reduced growth and maintained mineral content suggests that there may have been a change in the energetic balance of the exposed animals. In undersaturated conditions more mineral is expected to dissolve from the shell and hence more energy would be required to maintain the mineral integrity. Any energy that would normally be invested into growth could be reallocated and hence organisms growing in lowered pH grow slower and end up smaller than individuals grown in higher pH conditions. The idea of reallocation of resources under different conditions of pH requires further investigation. However, there could be long-term implications on the fitness of these barnacles, which in turn may prevent them from successfully colonising new areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All species of coccolithophore appear to respond to perturbations of carbonate chemistry in a different way. Here, we show that the degree of malformation, growth rate and stable isotopic composition of organic matter and carbonate produced by two contrasting species of coccolithophore (Gephyrocapsa oceanica and Coccolithus pelagicus ssp. braarudii) are indicative of differences between their photosynthetic and calcification response to changing DIC levels (ranging from ~1100 to ~7800 µmol/kg) at constant pH (8.13 ± 0.02). Gephyrocapsa oceanica thrived under all conditions of DIC, showing evidence of increased growth rates at higher DIC, but C. braarudii was detrimentally affected at high DIC showing signs of malformation, and decreased growth rates. The carbon isotopic fractionation into organic matter and the coccoliths suggests that C. braarudii utilises a common internal pool of carbon for calcification and photosynthesis but G. oceanica relies on independent supplies for each process. All coccolithophores appear to utilize bicarbonate as their ultimate source of carbon for calcification resulting in the release of a proton. But, we suggest that this proton can be harnessed to enhance the supply of CO2(aq) for photosynthesis either from a large internal HCO3- pool which acts as a pH buffer (C. braarudii), or pumped externally to aid the diffusive supply of CO2 across the membrane from the abundant HCO3- (G. oceanica), likely mediated by an internal and external carbonic anhydrase respectively. Our simplified hypothetical spectrum of physiologies may provide a context to understand different species response to changing pH and DIC, the species-specific delta p and calcite "vital effects", as well as accounting for geological trends in coccolithophore cell size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evidence of increasing concentrations of dissolved carbon dioxide, especially in the surface ocean and its associated impacts on calcifying organisms, is accumulating. Among these organisms, benthic and planktonic foraminifera are responsible for a large amount of the globally precipitated calcium carbonate. Hence, their response to an acidifying ocean may have important consequences for future inorganic carbon cycling. To assess the sensitivity of benthic foraminifera to changing carbon dioxide levels and subsequent alteration in seawater carbonate chemistry, we cultured specimens of the shallow water species Ammonia tepida at two concentrations of atmospheric CO2 (230 and 1900 ppmv) and two temperatures (10 °C and 15 °C). Shell weights and elemental compositions were determined. Impact of high and low pCO2 on elemental composition are compared with results of a previous experiment were specimens were grown under ambient conditions (380 ppvm, no shell weight measurements of specimen grown under ambient conditions are, however, available). Results indicate that shell weights decrease with decreasing [CO3], although calcification was observed even in the presence of calcium carbonate under-saturation, and also decrease with increasing temperature. Thus both warming and ocean acidification may act to decrease shell weights in the future. Changes in [CO3] or total dissolved inorganic carbon do not affect the Mg distribution coefficient. On the contrary, Sr incorporation is enhanced under increasing [CO3]. Implications of these results for the paleoceanographic application of foraminifera are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fixation of dissolved inorganic carbon (DIC) by marine phytoplankton provides an important feedback mechanism on concentrations of CO2 in the atmosphere. As a consequence it is important to determine whether oceanic primary productivity is susceptible to changing atmospheric CO2 levels Among numerous other factors, the acquisition of DIC by microalgae particularly in the polar seas is projected to have a significant effect on future phytoplanktonic production and hence atmospheric CO2 concentrations. Using the isotopic disequilibrium technique the contribution of different carbon species (CO2 and bicarbonate) to the overall DIC uptake and the extent to which external Carbonic Anhydrase (eCA) plays a role in facilitating DIC uptake was estimated. Simultaneous uptake of CO2 and HCO3- was observed in all cases, but the proportions in which different DIC species contributed to carbon assimilation varied considerably between stations. Bicarbonate as well as CO2 could be the major DIC source for local phytoplankton assemblages. There was a positive correlation between the contribution of CO2 to total DIC uptake and ambient concentration of CO2 in seawater suggesting that Southern Ocean microalgae could increase the proportion of CO2 uptake under future high atmospheric CO2 levels. Results will be discussed in view of metabolic costs related to DIC acquisition of Southern Ocean phytoplankton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas hydrothermal vents are used as a natural analogue for studying the effects of CO2 leakage from hypothetical shallow marine storage sites on benthic and pelagic systems. This study investigated the interrelationships between planktonic prokaryotes and viruses in the Panarea Islands hydrothermal system (southern Tyrrhenian Sea, Italy), especially their abundance, distribution and diversity. No difference in prokaryotic abundance was shown between high-CO2 and control sites. The community structure displayed differences between fumarolic field and the control, and between surface and bottom waters, the latter likely due to the presence of different water masses. Bacterial assemblages were qualitatively dominated by chemo- and photoautotrophic organisms, able to utilise both CO2 and H2S for their metabolic requirements. From significantly lower virioplankton abundance in the proximity of the exhalative area together with particularly low Virus-to-Prokaryotes Ratio, we inferred a reduced impact on prokaryotic abundance and proliferation. Even if the fate of viruses in this particular condition remains still unknown, we consider that lower viral abundance could reflect in enhancing the energy flow to higher trophic levels, thus largely influencing the overall functioning of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DSDP Hole 504B is the only hole in oceanic crust to penetrate through the volcanic section and into hydrothermally altered sheeted dikes. We have carried out petrologic and sulfur isotopic analyses of sulfide and sulfate minerals and whole rocks from the core in order to place constraints on the geochemistry of sulfur during hydrothermal alteration of ocean crust. The nearly 600 m-thick pillow section has lost sulfur to seawater and has net d34S = -1.8 per mil due to degassing of SO2 during crystallization and subsequent low temperature interaction with seawater. Hydrothermally altered rocks in the 200 m-thick transition zone are enriched in S and 34S (4300 ppm and +3.0 +/-1.2 per mil, respectively), whereas the more than 500 m of sheeted dikes contain 720 ppm S with d34S = +0.6 +/-1.4 per mil. These data are consistent with the presence of predominantly basaltic sulfur in hydrothermal fluids deep in the crust: following precipitation of anhydrite during seawater recharge, small amounts of seawater sulfate were reduced at temperatures >250°C through conversion of igneous pyrrhotite to secondary pyrite and minor oxidation of ferrous iron in the crust. The S- and 34S-enrichments of the transition zone are the results of seawater sulfate reduction and sulfide deposition during subsurface mixing between upwelling hot (up to 350°C) hydrothermal fluids and seawater. Seawater sulfate was probably reduced through oxidation of ferrous iron in hydrothermal fluids and in the transition zone rocks. Alteration of the upper crust resulted in loss of basaltic sulfur to seawater, fixation of minor seawater sulfur in the crust and redistribution of magmatic sulfur within the crust. This caused net increases in sulfur content and d34S of the upper 1.8 km of the oceanic crust.