274 resultados para Sand burial
Resumo:
At mid- to high-latitude marine sites, ice-rafted debris (IRD) is commonly recognized as anomalously coarse-grained terrigenous material contained within a fine-grained hemipelagic or pelagic matrix (e.g., Conolly and Ewing, 1970; Ruddiman, 1977, doi:10.1130/0016-7606(1977)88<1813:LQDOIS>2.0.CO;2; Krissek, 1989, doi:10.2973/odp.proc.sr.104.114.1989; Jansen et al., 1990; Bond et al., doi:10.1038/360245a0, 1992; Krissek, 1995, doi:10.2973/odp.proc.sr.145.118.1995). The presence of such ice-rafted material is a valuable indicator of the presence of glacial ice at sea level on an adjacent continent, whereas the composition of the IRD can often be used to identify the location of the source area (e.g., Goldschmidt, 1995, doi:10.1016/0025-3227(95)00098-J). Because the amount of core recovered during Leg 163 was very limited, this shore-based, postcruise study focuses on materials recovered at a nearby site during Leg 152. In particular, this study examines sediments recovered at Site 919; these sediments were described as containing a significant ice-rafted component in the Leg 152 Initial Reports volume (Larsen, Saunders, Clift, et al., 1994, doi:10.2973/odp.proc.ir.152.1994). In this study, the sedimentary section from Site 919 has been examined with the goal of providing a detailed history of glaciations on Greenland and other landmasses adjacent to the Norwegian-Greenland Sea; this history ultimately will be calibrated using an oxygen isotope stratigraphy (Flower, 1998, doi:10.2973/odp.proc.sr.152.219.1998), although that calibration has not been completed at this time. Because ice-core studies of the Greenland Ice Sheet (GIS) have shown that the GIS changed dramatically, and in some cases extremely rapidly, during at least the last interglacial stage (GRIP Members, 1993, doi:10.1038/364203a0), a detailed IRD record from the Southeast Greenland margin should provide insight into the longer term behavior of this sensitive component of the Northern Hemisphere climate system.
Resumo:
Strontium/calcium (Sr/Ca) ratios in bulk and foraminiferal calcite have been used to constrain the history of Sr/Ca in the oceans and to evaluate calcite diagenetic alteration. However bulk Sr/Ca records also may be influenced by differences in Sr uptake and/or in the diagenetic susceptibility of different calcium carbonate sedimentary components. We present data on the sediment size fraction and calcium carbonate distribution in bulk samples, Sr/Ca in a range of sedimentary size components, and Sr/Ca in bulk sediments. Ocean Drilling Program samples from sites on Ontong Java Plateau and Ceara Rise (in the western equatorial Pacific and Atlantic, respectively) and from sites in the eastern equatorial Pacific were selected to represent progressive stages in the diagenetic pathway from the sea floor through a range of burial depths equivalent to sediment ages of ~5.6, ~9.4, and ~37.1 Ma. Samples were subdivided by size to produce a unique data set of size-specific Sr/Ca ratios. Fine fraction (<45 ?m) Sr/Ca ratios are higher than those of all corresponding coarse fractions, indicating that fine nannofossil-dominated calcite has a Sr partition coefficient 1.3-1.5 times greater than that of coarse foraminifera-dominated calcite. Thus, absolute values of bulk Sr/Ca in contemporaneous samples reflect, in part, the ratio of fine to coarse calcite sedimentary components. Sr/Ca values in fine and coarse components also behave differently in their response to pre-burial dissolution and to recrystallization at depth. Coarse size components are sensitive to bottom water carbonate ion undersaturation, and they lose original Sr/Ca differences among contemporary samples over not, vert, similar10 my. In contrast, fine components recrystallize faster in more deeply buried samples. Interpretation of the historical Sr/Ca record is complicated by post-depositional diagenetic artifacts, and thus our data do not provide clear evidence of specific temporal changes in oceanic Sr/Ca ratios over the past 10 million years. This paper represents the first systematic attempt to examine trends in calcite Sr/Ca as a function of sediment size fraction and age.
Resumo:
Distribution of diatoms, radiolarians, planktonic and benthic foraminifers, and sediment components in fraction >0.125 mm was analyzed in a core obtained from the central Sea of Okhotsk within frameworks of the Russian-German KOMEX Project. The core section characterizes the period 190-350 ka, which corresponds to marine-isotopic stages (MIS) 7 to 10. During glacial MIS 10 and MIS 8, the basin accumulated terrigenous material lacking microfossils or containing them in low abundance, which reflects, along with their composition, heavy sea-ice conditions, suppressed bioproductivity, and bottom environment aggressive toward calcium carbonate. Interglacial MIS 9 was characterized by elevated bioproductivity with accumulation of diatomaceous ooze during the climatic optimum (328 to 320 ka). Water exchange with the Pacific was maximal from 328 to 324 ka ago. Environment became moderate and close to the present-day one at the end of the optimum exhibiting possible existence of a dichothermal layer with substantial amounts of surface Pacific water still flowing into the basin. Similar to interglacial MIS 5e and MIS 1, ''old'' Pacific water determined near-bottom environment in the central Sea of Okhotsk during that period, although influx of terrigenous material was higher, probably reflecting more humid climate of the region. Slight warming marked the terminal MIS 8 (approximately 260 ka ago). Paleoceanographic situation during the interglacial MIS 7 was highly variable: from warm-water to almost glacial. The main climatic optimum of MIS 7 occurred within 220-210 ka, when subsurface stratification increased and the dichothermal layer developed. Bottom environment during the studied time interval, except for the optimum of interglacial MIS 9, resembled those characteristic of glacial periods: actively formed ''young'' Okhotsk water displaced ''old'' Pacific deep water.
Resumo:
Detrital modes determined on 68 sandstone samples from CRP-3 drillcore indicate a continuation of the dynamic history of uplift-related erosion and unroofing previously documented in CRP-1 and CRP-2/2A. The source area is identified very strongly with the Transantarctic Mountains (TAM) Dry Valleys block in southern Victoria Land. Initial unroofing of the TAM comprised removal of much of a former capping sequence of Jurassic Kirkpatrick basalts, which preceded the formation of the Victoria Land Basin. Erosion of Beacon Supergroup outcrops took place during progressive uplift of the TAM in the Oligocene. Earliest CRP-3 Oligocene samples above 788 metres below the sea floor (mbsf) were sourced overwhelmingly in Beacon Supergroup strata, including a recognisable contribution from Triassic volcanogenic Lashly Formation sandstones (uppermost Victoria Group). Moving up-section, by 500 mbsf, the CRP-3 samples are depauperate quartz arenites dominantly derived from the quartzose Devonian Taylor Group. Between c. 500 and 450 mbsf, the modal parameters show a distinctive change indicating that small outcrops of basement granitoids and metamorphic rocks were also being eroded along with the remaining Beacon (mainly Taylor Group) sequence. Apart from enigmatic fluctuations in modal indices above 450 mbsf, similar to those displayed by samples in CRP-2/2A, the CRP-3 modes are essentially constant (within a broad data scatter) to the top of CRP-3. The proportion of exposed basement outcrop remained at < 20 %, indicating negligible uplift (i.e. relative stability) throughout that period.
Resumo:
Ocean acidification, recognized as a major threat to marine ecosystems, has developed into one of the fastest growing fields of research in marine sciences. Several studies on fish larval stages point to abnormal behaviours, malformations and increased mortality rates as a result of exposure to increased levels of CO2. However, other studies fail to recognize any consequence, suggesting species-specific sensitivity to increased levels of CO2, highlighting the need of further research. In this study we investigated the effects of exposure to elevated pCO2 on behaviour, development, oxidative stress and energy metabolism of sand smelt larvae, Atherina presbyter. Larvae were caught at Arrábida Marine Park (Portugal) and exposed to different pCO2 levels (control: 600 µatm, pH = 8.03; medium: 1000 µatm, pH = 7.85; high: 1800 µatm, pH = 7.64) up to 15 days, after which critical swimming speed (Ucrit), morphometric traits and biochemical biomarkers were determined. Measured biomarkers were related with: 1) oxidative stress-superoxide dismutase and catalase enzyme activities, levels of lipid peroxidation and DNA damage, and levels of superoxide anion production; 2) energy metabolism - total carbohydrate levels, electron transport system activity, lactate dehydrogenase and isocitrate dehydrogenase enzyme activities. Swimming speed was not affected by treatment, but exposure to increasing levels of pCO2 leads to higher energetic costs and morphometric changes, with larger larvae in high pCO2 treatment and smaller larvae in medium pCO2 treatment. The efficient antioxidant response capacity and increase in energetic metabolism only registered at the medium pCO2 treatment may indicate that at higher pCO2 levels the capacity of larvae to restore their internal balance can be impaired. Our findings illustrate the need of using multiple approaches to explore the consequences of future pCO2 levels on organisms.
Resumo:
Global databases of calcium carbonate concentrations and mass accumulation rates in Holocene and last glacial maximum sediments were used to estimate the deep-sea sedimentary calcium carbonate burial rate during these two time intervals. Sparse calcite mass accumulation rate data were extrapolated across regions of varying calcium carbonate concentration using a gridded map of calcium carbonate concentrations and the assumption that accumulation of noncarbonate material is uncorrelated with calcite concentration within some geographical region. Mean noncarbonate accumulation rates were estimated within each of nine regions, determined by the distribution and nature of the accumulation rate data. For core-top sediments the regions of reasonable data coverage encompass 67% of the high-calcite (>75%) sediments globally, and within these regions we estimate an accumulation rate of 55.9 ± 3.6 x 10**11 mol/yr. The same regions cover 48% of glacial high-CaCO3 sediments (the smaller fraction is due to a shift of calcite deposition to the poorly sampled South Pacific) and total 44.1 ± 6.0 x 10**11 mol/yr. Projecting both estimates to 100 % coverage yields accumulation estimates of 8.3 x 10**12 mol/yr today and 9.2 x 10**12 mol/yr during glacial time. This is little better than a guess given the incomplete data coverage, but it suggests that glacial deep sea calcite burial rate was probably not considerably faster than today in spite of a presumed decrease in shallow water burial during glacial time.
Resumo:
This study is based on rock mechanical tests of samples from platform carbonate strata to document their petrophysical properties and determine their potential for porosity loss by mechanical compaction. Sixteen core-plug samples, including eleven limestones and five dolostones, from Miocene carbonate platforms on the Marion Plateau, offshore northeast Australia, were tested at vertical effective stress, sigma1', of 0-70 MPa, as lateral strain was kept equal to zero. The samples were deposited as bioclastic facies in platform-top settings having paleo-water depths of <10-90 m. They were variably cemented with low-Mg calcite and five of the samples were dolomitized before burial to present depths of 39-635 m below sea floor with porosities of 8-46%. Ten samples tested under dry conditions had up to 0.22% strain at sigma1' = 50 MPa, whereas six samples tested saturated with brine, under drained conditions, had up to 0.33% strain. The yield strength was reached in five of the plugs. The measured strains show an overall positive correlation with porosity. Vp ranges from 3640 to 5660 m/s and Vs from 1840 to 3530 m/s. Poisson coefficient is 0.20-0.33 and Young's modulus at 30 MPa ranged between 5 and 40 GPa. Water saturated samples had lower shear moduli and slightly higher P- to S-wave velocity ratios. Creep at constant stress was observed only in samples affected by pore collapse, indicating propagation of microcracks. Although deposited as loose carbonate sand and mud, the studied carbonates acquired reef-like petrophysical properties by early calcite and dolomite cementation. The small strains observed experimentally at 50 MPa indicate that little mechanical compaction would occur at deeper burial. However, as these rocks are unlikely to preserve their present high porosities to 4-5 km depth, further porosity loss would proceed mainly by chemical compaction and cementation.
Resumo:
Present theories of deep-sea community organization recognize the importance of small-scale biological disturbances, originated partly from the activities of epibenthic megafaunal organisms, in maintaining high benthic biodiversity in the deep sea. However, due to technical difficulties, in situ experimental studies to test hypotheses in the deep sea are lacking. The objective of the present study was to evaluate the potential of cages as tools for studying the importance of epibenthic megafauna for deep-sea benthic communities. Using the deep-diving Remotely Operated Vehicle (ROV) "VICTOR 6000", six experimental cages were deployed at the sea floor at 2500 m water depth and sampled after 2 years (2y) and 4 years (4y) for a variety of sediment parameters in order to test for caging artefacts. Photo and video footage from both experiments showed that the cages were efficient at excluding the targeted fauna. The cage also proved to be appropriate to deep-sea studies considering the fact that there was no fouling on the cages and no evidence of any organism establishing residence on or adjacent to it. Environmental changes inside the cages were dependent on the experimental period analysed. In the 4y experiment, chlorophyll a concentrations were higher in the uppermost centimeter of sediment inside cages whereas in the 2y experiment, it did not differ between inside and outside. Although the cages caused some changes to the sedimentary regime, they are relatively minor compared to similar studies in shallow water. The only parameter that was significantly higher under cages at both experiments was the concentration of phaeopigments. Since the epibenthic megafauna at our study site can potentially affect phytodetritus distribution and availability at the seafloor (e.g. via consumption, disaggregation and burial), we suggest that their exclusion was, at least in part, responsible for the increases in pigment concentrations. Cages might be suitable tools to study the long-term effects of disturbances caused by megafaunal organisms on the diversity and community structure of smaller-sized organisms in the deep sea, although further work employing partial cage controls, greater replication, and evaluating faunal components will be essential to unequivocally establish their utility.
Resumo:
A study was made of mineral composition of sand- and silt-sized fractions of recent clastic (riftogenic) sediments and solidified deposits collected from the bottom of the Romanche Trench during the first voyage of R/V Akademik Kurchatov. Similarity between mineral compositions of sediments and bedrocks (ultrabasites, gabbroids, diabases) was established. This similarity is a basis for considering the mineral complex of the deposits that have been derived from the bedrocks of the trench slopes, and have formed due to their submarine denudation accompanied by tectonic crushing. The same mineral composition was found in pieces of older consolidated deposits; this suggests that conditions of sedimentation similar to those at recent times have existed for a long time in the Romanche Trench.
Resumo:
In this study we demonstrate the relevance of lateral particle transport in nepheloid layers for organic carbon (OC) accumulation and burial across high-productive continental margins. We present geochemical data from surface sediments and suspended particles in the bottom nepheloid layer (BNL) from the most productive coastal upwelling area of the modern ocean, the Benguela upwelling system offshore southwest Africa. Interpretation of depositional patterns and comparison of downslope trends in OC content, organic matter composition, and 14C age between suspended particles and surface sediments indicate that lateral particle transport is the primary mechanism controlling supply and burial of OC. We propose that effective seaward particle transport primarily along the BNL is a key process that promotes and maintains local high sedimentation rates, ultimately causing high preservation of OC in a depocenter on the upper slope offshore Namibia. As lateral transport efficiently displaces areas of enhanced OC burial from maximum production at highly productive continental margins, vertical particle flux models do not sufficiently explain the relationship between primary production and shallow-marine OC burial. On geologic time scales, the widest distribution and strongest intensity of lateral particle transport is expected during periods of rapid sea-level change. At times in the geologic past, widespread downslope lateral transport of OC thus may have been a primary driver of enhanced OC burial at deeper continental slopes and abyssal basins.
Resumo:
Over 150 million cubic meter of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply and recent widespread erosion of adjacent beaches, wetlands, and submarine environments. A unique, multi-faceted provenance study was performed to definitively establish the primary sources, sinks, and transport pathways of beach sized-sand in the region, thereby identifying the activities and processes that directly limit supply to the outer coast. This integrative program is based on comprehensive surficial sediment sampling of the San Francisco Bay Coastal System, including the seabed, Bay floor, area beaches, adjacent rock units, and major drainages. Analyses of sample morphometrics and biological composition (e.g., Foraminifera) were then integrated with a suite of tracers including 87Sr/86Sr and 143Nd/144Nd isotopes, rare earth elements, semi-quantitative X-ray diffraction mineralogy, and heavy minerals, and with process-based numerical modeling, in situ current measurements, and bedform asymmetry to robustly determine the provenance of beach-sized sand in the region.
Resumo:
The paleo-oceanography of the southeastern North Atlantic Ocean during the last 150,000 yr has been studied using biogenous and terrigenous components of hemipelagic sediments sampled close to the northwest African continental margin. Variations of oxygen isotope ratios in shells of benthic calcareous foraminifers in two cores allow the assignment of absolute ages to these cores (in the best case at 1000 yr increments). The uncorrected bulk sedimentation rates of the longest core range from 3.4 to 7.6 cm/ 1000 yr during Interglacial conditions, and from 6.5 to 9.9 cm/1000 yr during Glacial conditions; all other cores have given results of the same order of magnitude, but with generally increasing values towards the continental edge. The distribution of sediment components allow us to make inferences about paleo-oceanographic changes in this region. Frequencies of biogenic components from benthic organisms, oxygen isotope ratios measured in benthic calcareous foraminiferal shells, the total carbonate contents of the sediment and distributions of biogenic components from planktonic organisms often fluctuate in concert. However, all fluctuations which can be attributed to changes of the bottom water masses (North Atlantic Deep Water) seem to precede by several thousand years those which can be linked to changes of the surface water mass distributions or to changes of the climate over the neighboring land masses. Late Quaternary planktonic foraminiferal assemblages in the cores from the northwest African continental margin can be defined satisfactorily in the way that distributions of assemblages found in sediment surface samples from the northeast Atlantic Ocean have been explained. The distributions of assemblages in the northwest African cores can also be used to estimate past sea surface temperatures and salinities. The downcore record of these estimates reveals two warm periods during the last 150,000 yr, the lower one corresponding to the oxygen isotope stage 5 e (equivalent to the Eemian proper in Europe), the upper one to the younger half of the Holocene. Winter surface water temperatures during oxygen isotope stages 6, 4, 3, and 2 are remarkably constant in most cores, while summer sea surface temperatures during stage 3 reach values comparable to those of the warm periods during the Late Holocene and Eemian. Estimated winter sea surface temperatures range from > 16 °C to < 11°C, the summer sea surface temperatures from > 22 °C to < 15 °C during the last 150,000 yr. Estimates of the winter sea surface salinities fluctuate between 36.6? and 35.5?, the higher values being restricted to the warm periods since the penultimate Glacial. Estimates for sea surface temperatures and salinities for two cores from the center of today's coastal upwelling region show less pronounced fluctuations than the record of the open ocean cores in the case of the station 12379 off Cape Barbas, more pronounced in the case of station 12328 off Cape Blanc. Seasonal differences between winter and summer sea surface temperatures derived from the estimated temperatures are today more pronounced in the boundary region of the ocean to the continent than further away from the continent. The differences are generally higher during warm climatic periods of the last 150,000 yr than during cooler ones. The abundance of terrigenous grains in the coarse fractions generally decreases with increasing distance from the continental edge, and also from south to north. The dominant portion of the terrigenous detritus is carried out into the ocean during the relatively cool climatic periods (stage 6, 4, later part of stage 3, stage 2 and oldest part of stage 1). The enhanced precision of dating combined with the stratigraphic resolution of these high deposition rate cores make it clear that the peaks of the terrigenous input off this part of the northwest African continental margin occur simultaneously with times of rapid sea level fluctuations resulting from large volume changes of the large Glacial ice sheets.