302 resultados para Ruyter, Michiel Adriaansz deRuyter, Michiel Adriaansz deMichiel AdriaanszRuyterde
Resumo:
We present time series of export productivity proxy data including 230Thex-normalized deposition rates (rain rates) of 10Be, dissolution-corrected biogenic Ba, and biogenic opal as well as authigenic U concentrations which are complemented by rain rates of total (detrital) Fe and sea ice indicating diatom abundances from five sediment cores across the Atlantic sector of the Southern Ocean covering the past 150,000 years. The results suggest that 10Be rain rates and authigenic U concentration cannot serve as quantitative paleoproductivity proxies because they have also been influenced by detrital particle fluxes in the case of 10Be and bulk sedimentation rates (sediment focussing) and deep water oxygenation in the case of U. The combined results of the remaining productivity proxies of this study (rain rates of biogenic opal and biogenic Ba in those sections without authigenic U) and other previously published proxy data from the Southern Ocean (231Pa/230Th and nitrogen isotopes) suggest that a combination of sea ice cover, shallow remineralization depth, and stratification of the glacial water column south of the present position of the Antarctic Polar Front and possibly Fe fertilization north of it have been the main controlling factors of export paleoproductivity in the Southern Ocean over the last 150,000 years. An overall glacial increase of export paleoproductivity is not supported by the data, implying that bioproductivity variations in the Southern Ocean are unlikely to have contributed to the major glacial atmospheric CO2 drawdown observed in ice cores.
Resumo:
A closed eddy core in the Subantarctic Atlantic Ocean was fertilized twice with two tons of iron (as FeSO4), and the 300 km**2 fertilized patch was studied for 39 days to test whether fertilization enhances downward particle flux into the deep ocean. Chlorophyll a and primary productivity doubled after fertilization, and photosynthetic quantum yield (FV/FM) increased from 0.33 to >0.40. Silicic acid (<2 µmol/L) limited diatoms, which contributed <10% of phytoplankton biomass. Copepods exerted high grazing pressure. This is the first study of particle flux out of an artificially fertilized bloom with very low diatom biomass. Net community production (NCP) inside the patch, estimated from O2:Ar ratios, averaged 21 mmol POC/m**2/d, probably ±20%. 234Th profiles implied constant export of ~6.3 mmol POC/m**2/d in the patch, similar to unfertilized waters. The difference between NCP and 234Th-derived export partly accumulated in the mixed layer and was partly remineralized between the mixed layer and 100 m. Neutrally buoyant sediment traps at 200 and 450 m inside and outside the patch caught mostly <1.1 mmol POC/m**2/d, predominantly of fecal origin; flux did not increase upon fertilization. Our data thus indicate intense flux attenuation between 100 and 200 m, and probably between the mixed layer and 100 m. We attribute the lack of fertilization-induced export to silicon limitation of diatoms and reprocessing of sinking particles by detritus feeders. Our data are consistent with the view that nitrate-rich but silicate-deficient waters are not poised for enhanced particle export upon iron addition.
Resumo:
Vertical profiles of dissolved and particulate 230Th and 231Pa were obtained across the Antarctic Circumpolar Current (ACC) in the southern Atlantic. North of the Polar Front, dissolved and total 230Th increase with depth in conformity with published scavenging models. There is no depletion of 230Th or 231Pa in the water column south of the Polar Front, thought to be an area of enhanced biological productivity. 230Th concentrations increase three-fold to the Weddell Sea across the ACC. Dissolved and total 231Pa concentrations are relatively constant below 500 m depth at about 0.3 dpm m**-3, and change little with depth or latitude. The results from the Weddell Gyre are explained by a mixing-scavenging model that takes into account the input of lower Circumpolar Deep Water through upwelling, which is the main source of water in the Weddell Gyre and is enriched in 230Th but not in 231Pa. 230Th accumulates in the Weddell Gyre as a result of a reduction in the scavenging rate and by ingrowth from 234U. Ingrowth is more significant for 230Th than for 231Pa because the residence time of water in the gyre (about 35 years) is similar to the scavenging residence time of Th in the south Atlantic (29 years) but shorter than that of Pa (120 years). It is argued that changes in 230Th accumulation in the past may reflect changes in water residence time and in the formation rate of Weddell Sea Deep Water.
Resumo:
Actinium is one of the rarest naturally occurring elements on earth. We measured its longest-lived isotope 227Ac (half-life 21.77 yr) for the first time in the water column of the Southeast Pacific, the Central Arctic, the Antarctic Circumpolar Current (ACC) and the Weddell Gyre (WG). Besides the profile in the Southeast Pacific, which confirms earlier findings about the role of diapycnal mixing for 227Ac distribution, we found three other different types of vertical profiles. These profiles point to a prominent role of advection for 227Ac distribution, especially in the Southern Ocean. Depending on the type of profile found, 227Ac is proposed as a tracer for different oceanographic questions. In the Southern Ocean, up to 4.93±0.32 dpm/m**3 227Ac is found close to the sea floor, which is the highest concentration ever observed in the ocean. Close to the sea surface in the WG, 0.46±0.05 dpm/m**3 227Acex (227Ac in excess of its progenitor 231Pa) is detected. We use 227Acex there to determine the upwelling velocity in the Eastern WG to be about 55 m/yr. In the ACC, Upper and Lower Circumpolar Deep Water (UCDW and LCDW) are found to differ clearly in their 227Acex activity. High 227Acex activities are therefore a promising tracer for recent inputs of LCDW to the sea surface, which may help to understand the role of deep upwelling for iron inputs into Antarctic surface waters. The expected release of 227Ac is compared with 228Ra to make sure that the large near-surface excess in the water column of the Southern Ocean is not due to lateral inputs by isopycnal mixing. Data from the Central Arctic and from a transect across the ACC confirm that 228Ra and 227Acex differ strongly in their sources. The first measurements of 227Ac on suspended matter (less than 1.7% of total 227Ac close to the sea floor) indicate that the particle reactivity of 227Ac is negligible in the open ocean, in agreement with earlier findings [Y. Nozaki, Nature 310 (1984) 486-488]. Despite the extremely low concentrations of 227Ac, new measurement techniques [W.S. Moore, R. Arnold, J. Geophys. Res. 101 (1996) 1321-1329] point to a comfortable and comparably simple determination of 227Ac in the future. Finally, 227Acex may become a widely used deep-sea specific tracer.
Resumo:
Through the processes of the biological pump, carbon is exported to the deep ocean in the form of dissolved and particulate organic matter. There are several ways by which downward export fluxes can be estimated. The great attraction of the 234Th technique is that its fundamental operation allows a downward flux rate to be determined from a single water column profile of thorium coupled to an estimate of POC/234Th ratio in sinking matter. We present a database of 723 estimates of organic carbon export from the surface ocean derived from the 234Th technique. Data were collected from tables in papers published between 1985 and 2013 only. We also present sampling dates, publication dates and sampling areas. Most of the open ocean Longhurst provinces are represented by several measurements. However, the Western Pacific, the Atlantic Arctic, South Pacific and the South Indian Ocean are not well represented. There is a variety of integration depths ranging from surface to 220m. Globally the fluxes ranged from -22 to 125 mmol of C/m**2/d. We believe that this database is important for providing new global estimate of the magnitude of the biological carbon pump.