780 resultados para Lanthanum and samarium,


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Age-progressive, linear seamount chains in the northeast Pacific appear to have formed as the Pacific plate passed over a set of stationary hotspots; however, some anomalously young ages and the lack of an "enriched" isotopic signature in basalts from the seamounts do not fit the standard hotspot model. For example, published ages (28-30 Ma) for basalts dredged from the Patton-Murray seamount platform in the Gulf of Alaska are 2-4 m.y. younger than the time when the platform was above the Cobb hotspot. However, the lowermost basalt recovered by ocean drilling on Patton-Murray yielded a 40Ar-39Ar age of 33 Ma. This age exactly coincides with the time when the seamount platform was above the Cobb hotspot, consistent with a stationary, long-lived mantle plume. A 27 Ma alkalic basalt flow recovered 8 m above the 33 Ma basalt is similar in age and composition to the previously dredged basalts, and may be the alkalic capping phase typical of many hotspot volcanoes. A 17 Ma tholeiitic basalt sill recovered 5 m above the 27 Ma basalt was emplaced long after the seamount platform moved away from the hotspot, and may be associated with a period of intraplate extension. Anomalously young phases of volcanism on this and other hotspot seamounts suggest that they can be volcanically rejuvenated by nonhotspot causes, but this rejuvenation does not rule out the hotspot model as an explanation for the initial creation of the seamount platform. The lack of an "enriched" isotopic signature in any of these basalts shows that enriched compositions are not necessary characteristics of plume-related basalts. The isotopic compositions of the lower basalts are slightly more depleted than the 0-9 Ma products of the Cobb hotspot, despite the fact that the hotspot was closer to a spreading ridge at 0-9 Ma. It appears that this hotspot, like several others, has become more enriched with time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fluid flow through the axial hydrothermal system at fast spreading ridges is investigated using the Sr-isotopic composition of upper crustal samples recovered from a tectonic window at Pito Deep (NE Easter microplate). Samples from the sheeted dike complex collected away from macroscopic evidence of channelized fluid flow, such as faults and centimeter-scale hydrothermal veins, show a range of 87Sr/86Sr from 0.7025 to 0.7030 averaging 0.70276 relative to a protolith with 87Sr/86Sr of ~0.7024. There is no systematic variation in 87Sr/86Sr with depth in the sheeted dike complex. Comparison of these new data with the two other localities that similar data sets exist for (ODP Hole 504B and the Hess Deep tectonic window) reveals that the extent of Sr-isotope exchange is similar in all of these locations. Models that assume that fluid-rock reaction occurs during one-dimensional (recharge) flow lead to significant decreases in the predicted extent of isotopic modification of the rock with depth in the crust. These model results show systematic misfits when compared with the data that can only be avoided if the fluid flow is assumed to be focused in isolated channels with very slow fluid-rock exchange. In this scenario the fluid at the base of the crust is little modified in 87Sr/86Sr from seawater and thus unlike vent fluids. Additionally, this model predicts that some rocks should show no change from the fresh-rock 87Sr/86Sr, but this is not observed. Alternatively, models in which fluid-rock reaction occurs during upflow (discharge) as well as downflow, or in which fluids are recirculated within the hydrothermal system, can reproduce the observed lack of variation in 87Sr/86Sr with depth in the crust. Minimum time-integrated fluid fluxes, calculated from mass balance, are between 1.5 and 2.6 * 10**6 kg/m**2 for all areas studied to date. However, new evidence from both the rocks and a compilation of vent fluid compositions demonstrates that some Sr is leached from the crust. Because this leaching lowers the fluid 87Sr/86Sr without changing the rock 87Sr/86Sr, these mass balance models must underestimate the time-integrated fluid flux. Additionally, these values do not account for fluid flow that is channelized within the crust.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The radiogenic isotope composition of neodymium (Nd) and strontium (Sr) are useful tools to investigate present and past oceanic circulation or input of terrigenous material. We present Nd and Sr isotope compositions extracted from different sedimentary phases, including early diagenetic Fe-Mn coatings, "unclean" foraminiferal shells, fossil fish teeth, and detritus of marine surface sediments (core-tops) covering the entire midlatitude South Pacific. Comparison of detrital Nd isotope compositions to deep water values from the same locations suggests that "boundary exchange" has little influence on the Nd isotope composition of western South Pacific seawater. Concentrations of Rare Earth Elements (REE) and Al/Ca ratios of "unclean" planktonic foraminifera suggest that this phase is a reliable recorder of seawater Nd isotope composition. The signatures obtained from fish teeth and "nondecarbonated" leachates of bulk sediment Fe-Mn oxyhydroxide coatings also agree with "unclean" foraminifera. Direct comparison of Nd isotope compositions extracted using these methods with seawater Nd isotope compositions is complicated by the low accumulation rates yielding radiocarbon ages of up to 24 kyr, thus mixing the signal of different ocean circulation modes. This suggests that different past seawater Nd isotope compositions have been integrated in authigenic sediments from regions with low sedimentation rates. Combined detrital Nd and Sr isotope signatures indicate a dominant role of the Westerly winds transporting lithogenic material from South New Zealand and Southeastern Australia to the open South Pacific. The proportion of this material decreases toward the east, where supply from the Andes increases and contributions from Antarctica cannot be ruled out.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Despite its enormous extent and importance for global climate, the South Pacific has been poorly investigated in comparison to other regions with respect to chemical oceanography. Here we present the first detailed analysis of dissolved radiogenic Nd isotopes (epsilon-Nd) and rare earth elements (REEs) in intermediate and deep waters of the mid-latitude (~40°S) South Pacific along a meridional transect between South America and New Zealand. The goal of our study is to gain better insight into the distribution and mixing of water masses in the South Pacific and to evaluate the validity of Nd isotopes as a water mass tracer in this remote region of the ocean. The results demonstrate that biogeochemical cycling (scavenging processes in the Eastern Equatorial Pacific) and release of LREEs from the sediment clearly influence the distribution of the dissolved REE concentrations at certain locations. Nevertheless, the Nd isotope signatures clearly trace water masses including AAIW (Antarctic Intermediate Water) (average epsilon-Nd = -8.2 ± 0.3), LCDW (Lower Circumpolar Deep Water) (average epsilon-Nd = -8.3 ± 0.3), NPDW (North Pacific Deep Water) (average epsilon-Nd = -5.9 ± 0.3), and the remnants of NADW (North Atlantic Deep Water) (average epsilon-Nd = -9.7 ± 0.3). Filtered water samples taken from the sediment-water interface under the deep western boundary current off New Zealand suggest that boundary exchange processes are limited at this location and highlight the spatial and temporal variability of this process. These data will serve as a basis for the paleoceanographic application of Nd isotopes in the South Pacific.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Here we present the first radiometric age data and a comprehensive geochemical data set (including major and trace element and Sr-Nd-Pb-Hf isotope ratios) for samples from the Hikurangi Plateau basement and seamounts on and adjacent to the plateau obtained during the R/V Sonne 168 cruise, in addition to age and geochemical data from DSDP Site 317 on the Manihiki Plateau. The 40Ar/39Ar age and geochemical data show that the Hikurangi basement lavas (118-96 Ma) have surprisingly similar major and trace element and isotopic characteristics to the Ontong Java Plateau lavas (ca. 120 and 90 Ma), primarily the Kwaimbaita-type composition, whereas the Manihiki DSDP Site 317 lavas (117 Ma) have similar compositions to the Singgalo lavas on the Ontong Java Plateau. Alkalic, incompatible-element-enriched seamount lavas (99-87 Ma and 67 Ma) on the Hikurangi Plateau and adjacent to it (Kiore Seamount), however, were derived from a distinct high time-integrated U/Pb (HIMU)-type mantle source. The seamount lavas are similar in composition to similar-aged alkalic volcanism on New Zealand, indicating a second wide-spread event from a distinct source beginning ca. 20 Ma after the plateau-forming event. Tholeiitic lavas from two Osbourn seamounts on the abyssal plain adjacent to the northeast Hikurangi Plateau margin have extremely depleted incompatible element compositions, but incompatible element characteristics similar to the Hikurangi and Ontong Java Plateau lavas and enriched isotopic compositions intermediate between normal mid-ocean-ridge basalt (N-MORB) and the plateau basement. These younger (~52 Ma) seamounts may have formed through remelting of mafic cumulate rocks associated with the plateau formation. The similarity in age and geochemistry of the Hikurangi, Ontong Java and Manihiki Plateaus suggest derivation from a common mantle source. We propose that the Greater Ontong Java Event, during which ?1% of the Earth's surface was covered with volcanism, resulted from a thermo-chemical superplume/dome that stalled at the transition zone, similar to but larger than the structure imaged presently beneath the South Pacific superswell. The later alkalic volcanism on the Hikurangi Plateau and the Zealandia micro-continent may have been part of a second large-scale volcanic event that may have also triggered the final breakup stage of Gondwana, which resulted in the separation of Zealandia fragments from West Antarctica.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fine-grained sediments of the Cariaco Basin, Venezuela, of the last 130 ky, whose deposition history is well characterized, were analyzed geochemically in order to test the validity of sediment bulk geochemistry as an indicator of detrital provenance. Several binary and ternary diagrams as well as the chemical index of alteration (CIA) were tested for their capacity to discriminate the poorly contrasted detrital sources to the Cariaco Basin, and to describe the temporal evolution of the contributions of these different sources. Most of the diagrams tested did not allow a good discrimination of sources or, when sources were well discriminated, did not allow an interpretation of the temporal variations consistent with the known history. A relatively good discrimination of sources and a consistent interpretation of temporal variations were however obtained using Hf vs. Th and La/Yb vs. Gd/Yb binary diagrams, as well as Ti-Zr-Th, Ti-Zr-La, and Lu-Hf-Th ternary diagrams. Compared to the previous studies of the detrital content of the Cariaco Basin sediments, the geochemical approach permitted the recognition of a sediment contribution eroded from the Unare platform and Gulf of Cariaco during rapid sea level oscillations, and the contribution of Saharan eolian particles during the Younger Dryas-Preboreal and MIS6-5 transition. The choice of plotted elements was determined after considering carrier minerals, so that different elements may be informative in different sedimentary contexts. Overall, mineral sorting during transport appears as a major limit to quantitative estimation of the different contributions. In particular mineral sorting leads to the selective enrichment of elements associated with clays (Al, Rb, Th and LREE) in sediments deposited in the basin. Unless the geochemical effect of mineral sorting can be measured, it appears that quantitative provenance analysis should be performed on fractions of similar grain size instead of bulk sediment.