710 resultados para Deep-sea chondrichthyans diversity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assemblages of living deep-sea benthic foraminifera, their densities, vertical distribution pattern, and diversity, were investigated in the intermonsoon period after the northeast monsoon in the Arabian Sea in spring 1997. Foraminiferal numbers show a distinct gradient from north to south, with a maximum of 623 foraminifera in 50 cm**3 at the northern site. High percentages of small foraminifera were found in the western and northern part of the Arabian Sea. Most stations show a typical vertical distribution with a maximum in the first centimeter and decreasing numbers with increasing sediment depths. But at the central station, high densities can be found even in deeper sediment layers. Diversity is very high at the northern and western sites, but reduced at the central and southern stations. Data and faunal assemblages were compared with studies carried out in 1995. A principal component analysis of intermonsoon assemblages shows that the living benthic foraminifera can be characterized by five principal component communities. Dominant communities influencing each site differ strongly between the two years. In spring 1997, stations in the north, west and central Arabian Sea were dominated by opportunistic species, indicating the influence of fresh sedimentation pulses or enhanced organic carbon fluxes after the northeast monsoon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Ocean Drilling Program (ODP) Leg 105, a thick sequence of lower Eocene to lower Oligocene sediments was recovered from Hole 647A in the southern Labrador Sea. These sediments contain diverse, well-preserved, high-latitude calcareous nannofossil flora. The nannofossil biostratigraphy of the hole indicates the presence of a minor hiatus between Zones NP 16 and NP 17 in the upper middle Eocene and a barren interval separating Zones NP 13 and NP 15. Species abundance is highest within the lower to middle Eocene and starts to decline near the base of the upper Eocene. No major change in the nannoflora was observed across the Eocene/Oligocene boundary, although a slight decrease in species abundance was recorded. The Paleogene calcareous nannofossils of nearby DSDP Site 112 were reexamined and compared with those of Site 647. Several cores were reassigned to different nannofossil zones. The calcareous nannoflora are dominated by high-latitude indicative species and also exhibit a high diversity, which suggests the influence of more temperate water masses in this region during Eocene and Oligocene time. One new subspecies from the middle Eocene, Sphenolithus furcatolithoides labradorensis, is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antipatharia are a diverse group of corals with many species found in deep water. Many Antipatharia are habitat for associates, have extreme longevity and some species can occur beyond 8500 m depth. As they are major constituents of 'coral gardens', which are Vulnerable Marine Ecosystems (VMEs), knowledge of their distribution and environmental requirements is an important pre-requisite for informed conservation planning particularly where the expense and difficulty of deep-sea sampling prohibits comprehensive surveys. This study uses a global database of Antipatharia distribution data to perform habitat suitability modelling using the Maxent methodology to estimate the global extent of black coral habitat suitability. The model of habitat suitability is driven by temperature but there is notable influence from other variables of topography, surface productivity and oxygen levels. This model can be used to predict areas of suitable habitat, which can be useful for conservation planning. The global distribution of Antipatharia habitat suitability shows a marked contrast with the distribution of specimen observations, indicating that many potentially suitable areas have not been sampled, and that sampling effort has been disproportionate to shallow, accessible areas inside marine protected areas (MPAs). Although 25% of Antipatharia observations are located in MPAs, only 7-8% of predicted suitable habitat is protected, which is short of the Convention on Biological Diversity target to protect 10% of ocean habitats by 2020.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cores from Sites 689 and 690 of Ocean Drilling Program Leg 113 provide the most continuous Paleocene and Eocene sequence yet recovered by deep sea drilling in the high latitudes of the Southern Ocean. The nannofossil-foraminifer oozes and chalks recovered from Maud Rise at 65°S in the Weddell Sea provide a unique opportunity for biostratigraphic study of extremely high southern latitude carbonate sediments. The presence of warm water index fossils such as the discoasters and species of the Tribrachiatus plexus facilitate the application of commonly used low latitude calcareous nannofossil biostratigraphic zonation schemes for the upper Paleocene and lower Eocene intervals. In the more complete section at Site 690, Okada and Bukry Zones CP1 through CP10 can be identified for the most part with the possible exception of Zone CP3. Several hiatuses are present in the sequence at Site 689 with the most notable being at the Cretaceous/Tertiary and Paleocene/Eocene boundaries. Though not extremely diverse, the assemblage of discoasters in the upper Paleocene and lower Eocene calcareous oozes is indicative of warm, relatively equable climates during that interval. A peak in discoaster diversity in uppermost Paleocene sediments (Zone CP8) corresponds to a negative shift in 5180 values. Associated coccolith assemblages are quite characteristic of high latitudes with abundant Chiasmolithus, Prinsius, and Toweius. Climatic cooling is indicated for middle Eocene sediments by assemblages that contain very abundant Reticulofenestra, lack common discoasters and sphenoliths and are much less diverse overall. Two new taxa are described, Biscutum? neocoronum n. sp. and Amithalithina sigmundii n. gen., n. sp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Arabian Sea, productivity in the surface waters and particle flux to the deep sea are controlled by monsoonal winds. The flux maxima during the South-West (June-September) and the North-East Monsoon (December-March) are some of the highest particle fluxes recorded with deep-sea sediment traps in the open ocean. Benthic microbial biomass and activities in surface sediments were measured for the first time in March 1995 subsequent to the NE-monsoon and in October 1995 subsequent to the SW-monsoon. These measurements were repeated in April/May 1997 and February/March 1998, at a total of six stations from 1920 to 4420 m water depth. This paper presents a summary on the regional and temporal variability of microbial biomass, production, enzyme activity, degradation of 14C-labeled Synechococcus material as well as sulfate reduction in the northern, western, eastern, central and southern Arabian deep sea. We found a substantial regional variation in microbial biomass and activity, with highest values in the western Arabian Sea (station WAST), decreasing approximately threefold to the south (station SAST). Benthic microbial biomass and activity during the NE-monsoon was as high or higher than subsequent to the SW-monsoon, indicating a very rapid turnover of POC in the surface sediments. This variation in the biomass and activity of the microbial assemblages in the Arabian deep sea can largely be explained by the regional and temporal variation in POC flux. Compared to other abyssal regions, the substantially higher benthic microbial biomasses and activities in the Arabian Sea reflect the extremely high productivity of this tropical basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eight different sites from 2300 to 4420 m water depth in the Arabian Sea were sampled for a biochemical quantification of phospholipid concentrations in the sediments. This method serves as a measure of microbial biomass in marine sediments comprising all small-sized organisms, including bacteria, fungi, protozoa and metazoa. Phospholipid concentrations can be converted to carbon units as an estimate of total microbial biomass in the sediments. The average phospholipid concentrations in the surface sediments (0-1 cm) of the 4 abyssal sites ranged from 7 nmol cm?3 at the southern site (SAST, 10°N 65°E, 4425 m) to 29 nmol/cm**3 at the western site (WAST, 16°N 60°E, 4045 m). The high values detected at the abyssal station WAST exceeded those in the literature for other abyssal sites and were comparable to values from the upper continental slope of the NE-Atlantic and the Arctic. At the four continental slope sites in the Arabian Sea, average phospholipid concentrations ranged from 9 to 53 nmol/cm**3 with the maximum values at stations A (2314 m) and D (3142 m) close to the Omani coast. Records of particulate organic carbon flux to the deep sea are available for four of the investigated locations, allowing a test of the hypothesis that the standing stock of benthic microorganisms in the deep sea is controlled by substrate availability, i.e. particle sedimentation. Total microbial biomass in the surface sediments of the Arabian Sea was positively correlated with sedimentation rates, consistent with previous studies of other oceans. The use of the measurement of phospholipid concentrations as a proxy for input of particulate organic matter is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic foraminiferal assemblages of distinctive taxonomic composition occur at the top of benthic fossil-free black shales which correspond to the anoxic event at the Cenomanian/Turonian boundary in the North Atlantic abyssal DSDP/ODP sites 386, 398, 603 and 641. These assemblages consist of minute, thin-walled agglutinated foraminifera with low specific diversity of 2 to 4 species, variable abundance and dominance of few taxa (Haplophragmoides, Rhizammina and Glomospira). The species are inferred to be opportunistic, able to survive in low-oxygen environments and to be pioneers recolonizing the seafloor after cessation of bottom-water anoxia. Most species are characterized by test morphologies with high surface/volume ratios and single-layered wall structures, with loosely agglutinated grains, and small amounts of organic cement for agglutination. These features are best observed in material from ODP Hole 641A which has exceptional foraminiferai preservation because of its shallow burial depth. The successive appearance of benthic foraminifera after the anoxic event is probably controlled by the continuous reoccurrence of more oxygenated bottom- and interstitial-water conditions. With the final development of oxic bottom-water conditions in the Turonian, a rapid radiation of deep-water agglutinated foraminifera occurred in the North Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep-sea benthic foraminiferal assemblages from Ocean Drilling Program (ODP) Site 1143 located in the southern South China Sea (SCS) were investigated to evaluate the relationship between faunal composition patterns and paleoceanographic changes during the last 6 million years (late Miocene to Holocene). We used multivariate statistics (correspondence analysis) to analyze carbon-flux-related changes in assemblage composition of benthic foraminifers. Additional proxies for carbon flux and deep-water ventilation include delta13C records of epifaunal Cibicidoides wuellerstorfi and infaunal Uvigerina peregrina var. dirupta and Melonis pompilioides, benthic foraminiferal accumulation rates (BFARs), diversity indices, and relative abundances of indicator species. We observe three significant benthic faunal changes in the southern South China Sea during the last 6 million years. Strong fluctuations in BFAR and relative abundance of productivity indicator species between glacial and interglacial stages after the mid-Pleistocene revolution (MPR) at approximately 0.9 Ma, indicating stronger seasonal carbon flux fluctuations, are accompanied by the extinction of such species as Stilostomella spp. Increases in carbon flux indicator species are coupled with an overall decrease in benthic foraminifer diversity around 3.0 Ma in the late Pliocene. This may indicate increasing carbon flux in a period of productivity maximum caused by enhanced offshore upwelling from intensified winter monsoon wind strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution, biomass, and diversity of living (Rose Bengal stained) deep-sea benthic foraminifera (>30 µm) were investigated with multicorer samples from seven stations in the Arabian Sea during the intermonsoonal periods in March and in September/October, 1995. Water depths of the stations ranged between 1916 and 4425 m. The distribution of benthic foraminifera was compared with dissolved oxygen, % organic carbon, % calcium carbonate, ammonium, % silica, chloroplastic pigment equivalents, sand content, pore water content of the sediment, and organic carbon flux to explain the foraminiferal patterns and depositional environments. A total of six species-communities comprising 178 living species were identified by principal component analysis. The seasonal comparison shows that at the western stations foraminiferal abundance and biomass were higher during the Spring Intermonsoon than during the Fall Intermonsoon. The regional comparison indicates a distinct gradient in abundance, biomass, and diversity from west to east, and for biomass from north to south. Highest values are recorded in the western part of the Arabian Sea, where the influence of coastal and offshore upwelling are responsible for high carbon fluxes. Estimated total biomass of living benthic foraminifera integrated for the upper 5 cm of the sediment ranged between 11 mg Corg m**-2 at the southern station and 420 mg Corg m**-2 at the western station. Foraminifera in the size range from 30 to 125 ?m, the so-called microforaminifera, contributed between 20 and 65% to the abundance, but only 3% to 28% to the biomass of the fauna. Highest values were found in the central and southern Arabian Sea, indicating their importance in oligotrophic deep-sea areas. The overall abundance of benthic foraminifera is positively correlated with oxygen content and pore volume, and partly with carbon content and chloroplastic pigment equivalents of the sediment. The distributional patterns of the communities seem to be controlled by sand fraction, dissolved oxygen, calcium carbonate and organic carbon content of the sediment, but the critical variables are of different significance for each community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold seep ecosystems are highly productive, fragmented ecosystems of the deep-sea floor. They form worldwide where methane reaches the surface seafloor, and are characterized by rich chemosynthetic communities fueled by the microbial utilization of hydrocarbons. Here we investigated with in situ (benthic chamber, microprofiler) and ex situ (pore water constituents, turnover rates of sulfate and methane, prokaryote abundance) techniques reduced sites from three different seep ecosystems in the Eastern Mediterranean deep-sea. At all three cold seep systems, the Amon Mud Volcano, Amsterdam Mud Volcano and the Nile Deep Sea Fan Pockmark area, we observed and sampled patches of highly reduced, methane-seeping sulfidic sediments which were separated by tens to hundreds of (kilo)meters with non-reduced oxygenated seafloor areas. All investigated seep sites were characterized by gassy, sulfidic sediments of blackish color, of which some were overgrown with thiotrophic bacterial mats. Fluxes of methane and oxygen, as well as sulfate reduction rates varied between the different sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous sedimentary records from an eastern Mediterranean cold-water coral ecosystem thriving in intermediate water depths (~600 m) reveal a temporary extinction of cold-water corals during the Early to Mid Holocene from 11.4-5.9 cal kyr BP. Benthic foraminiferal assemblage analysis shows low-oxygen conditions of 2 ml l**-1 during the same period, compared to bottom-water oxygen values of 4-5 ml l**-1 before and after the coral-free interval. The timing of the corals' demise coincides with the sapropel S1 event, during which the deep eastern Mediterranean basin turned anoxic. Our results show that during the sapropel S1 event low oxygen conditions extended to the rather shallow depths of our study site in the Ionian Sea and caused the cold-water corals temporary extinction. This first evidence for the sensitivity of cold-water corals to low oceanic oxygen contents suggests that the projected expansion of tropical oxygen minimum zones resulting from global change will threaten cold-water coral ecosystems in low latitudes in the same way that ocean acidification will do in the higher latitudes.