290 resultados para Central points
Resumo:
Cainozoic deep-sea ostracod assemblages from the summits of Mid-Pacific guyots point to high levels of endemism possibly as a result of their bathymetric separation from the surrounding sea floor. However, the interpretation of these fossil assemblages is hampered by the paucity of comparative material from surrounding non-guyot sites. Fifteen ostracod assemblages from DSDP Site 463 (Late Cretaceous-Pleistocene) were studied to compare with those from nearby guyots. Three distinct faunal assemblages are recognised at Site 463: Assemblage A (Maastrichtian-Eocene), Assemblage B (Oligocene-Upper Miocene) and Assemblage C (Upper Miocene-Pleistocene) although the palaeoenvironmental significance of these units is unclear. Sixty-two ostracod species are identified, the thirteen most abundant are discussed in the taxonomic section, five of which are described as new. Between 30 and 100% of the species encountered in each sample are considered as endemic to Site 463, while some of the remaining species were previously thought to be endemic to individual guyots. Similarly high levels of endemism on nearby guyots probably reflect an incomplete knowledge of deep-sea ostracod faunas rather than the establishment of geographically or bathymetrically restricted populations. The presence of globally pandemic and geographically widespread taxa on sites such as the Mid-Pacific Mountains, surrounded by abyssal depths which lie below the CCD, indicates that some faunal exchange or migration of ostracods does take place. This must be achieved within the intermediate waters and probably occurs passively.
Resumo:
Total contents of carbohydrates were determined in samples of natural sediments of various genetic types. Analyses were made on board. Deep-sea pelagic sediments (red clays of various types including zeolite clays, and also radiolarian and carbonate oozes) were the main types of sediments studied. Contents of carbohydrates in pelagic oozes of the Central Pacific ranged from 214 to 1605 ppm, averaging 602 ppm of air-dried sediment. Organic matter of the group studied is a diagenetically stable complex, with polysaccharides apparently predominating.
Resumo:
Stable oxygen and carbon isotope and sedimentological-paleontological investigations supported by accelerator mass spectrometry 14C datings were carried out on cores from north of 85°N in the eastern central Arctic Ocean. Significant changes in accumulation rates, provenance of ice-rafted debris (IRD), and planktic productivity over the past 80,000 years are documented. During peak glacials, i.e., oxygen isotope stages 4 and 2, the Arctic Ocean was covered by sea ice with decreased seasonal variation, limiting planktic productivity and bulk sedimentation rates. In early stage 3 and during Termination I, major deglaciations of the circum-Arctic regions caused lowered salinities and poor oxygenation of central Arctic surface waters. A meltwater spike and an associated IRD peak dated to ~14-12 14C ka can be traced over the southern Eurasian Basin of the Arctic Ocean. This event was associated with the early and rapid deglaciation of the marine-based Barents Sea Ice Sheet. A separate Termination Ib meltwater event is most conspicuous in the central Arctic and is associated with characteristic dolomitic carbonate IRD. This lithology suggests an origin of glacial ice from northern Canada and northern Greenland where lower Paleozoic platform carbonates crop extensively out.
Resumo:
We report the occurrence of ferrobasalts recovered from the Central Indian Ocean Basin crust generated at the Southeast Indian Ridge during a phase of moderate to fast spreading accretion (~110-190 mm/yr, full rate).The rocks are rich in plagioclase, FeO* (13/19 %), and TiO2 (2.27/2.76 %), poor in olivine and MgO (3.44/6.20%), and associated with topographic highs and increased amplitude magnetic anomalies corresponding to chrons A25 and A24. We suggest that secon dary eruptions from ancient N-MORB magma, which may have been trapped at a shallow depth in a horizon of neutral buoyancy, could have produced the ferrobasalts.
Resumo:
The sandfraction of the sediment was analysed in five cores, taken from 65 m water depth in the central and eastern part of the Persian Gulf. The holocene marls are underlayn by aragonite muds, which are probably 10-11,000 years old. 1. The cores could be subdivided into coarse grained and fine grained layers. Sorting is demonstrated by the following criteria: With increasing median values of the sandfraction - the fine grained fraction decreases within each core; - the median of each biogenic component, benthonic as well as planktonic, increases; - the median of the relict sediment, which in core 1179 was carried upward into the marl by bioturbation, increases; - the percentages of pelecypods, gastropods, decapods and serpulid worms in the sandfraction increase, the percentages of foraminifera and ostracods decrease; - the ratios of pelecypods to foraminifera and of decapods to ostracods increase; - the ratios of benthonic molluscs to planktonic molluscs (pteropods) and of benthonic foraminifera to planktonic foraminifera increase (except in core 1056 and 1179); - the ratio of planktonic molluscs (pteropods) to planktonic foraminifera increases; - the globigerinas without orbulinas increase, the orbulinas decrease in core 1056. Different settling velocities of these biogenic particles help in better understanding the results : the settling velocities, hence the equivalent hydrodynamic diameters, of orbulinas are smaller than those of other globigerinas, those of planktonic foraminifera are smaller than those of planktonic molluscs, those of planktonic molluscs are smaller than those of benthonic molluscs, those of pelecypods are smaller than those of gastropods. Bioturbation could not entirely distroy this "grain-size-stratification". Sorting has been stronger in the coarse layers than in the finer ones. As a cause variations in the supply of terrigenous material at constant strength of tidal currents is suggested. When much terrigenous material is supplied (large contents of fine grained fraction) the sedimentation rates are high: the respective sediment surface is soon covered and removed from the influence of tidal currents. When, however, the supply of terrigenous material is small, more sandy material is taken away in all locations within the influence of terrigenous supply. Thus the biogenic particles in the sediment do not only reflect the organic production, but also the influence of currents. 2. There is no parameter present in all cores that is independently variable from grain size and can be used for stratigraphic correlation. The two cores from the Strait of Hormus were correlated by their sequences of coarse and fine grained layers. 3. The sedimentation rates of terrigenous material, of total planktonic and benthonic organisms and of molluscs, foraminifera, echinoids and ophiuroids are shown in table 1 (total sediment 6.3-75.5 cm/1000 yr, biogenic carbonate 1.9-3.6 cm/1000 yr). The sedimentation rates of benthonic organisms are nearly the same in the cores of the Strait of Hormus, whereas near the Central Swell they are smaller. In the upper parts of the two cores of the Strait of Hormus sedimentation rates are higher than in the deeper parts, where higher median values point to stronger reworking. 4. The sequence of coarse and fine grained intervals in the two cores of the Hormus Strait, attributed to variations in climate, as well as the increase of terrigenous supply from the deeper to the upper parts of the cores, agrees with the descriptions in the literature of the post Pleistocene climate as becoming more humid. The rise of sea level is sedimentologically not measurable in the marly sediments - except perhaps for the higher content of echinoids in the lower part of core 1056. These may be attributed to the influence of a migrating wave-base. 5. The late Pleistocene aragonite mud is very fine grained (> 50%< 2 p) and poor in fossils (0.5-1.8%) biogenic particles of total sediment. The sand fraction consists almost entirely of white clumps, c. 0.1 mm in diameter (1177), composed of aragonite needles and of detrital minerals with the same size (1201). The argonite mud was probably not formed in situ, because the water depth at time of formation was at most 35 m at least 12 m. The sorting of the sediment (predominance of the fine grained sand), the absence of larger biogenic components and of pellets, c. 0.2-0.5 mm in diameter, which are typical for Recent and Pleistocene locations of aragonite formation, as well as the sedimentological conditions near the sampling points, indicate rather a transport of aragonite mud from an area of formation in very shallow waters. Sorting as well as lenticular fabric in core 1201 point to sedimentation within the influence of currents. During alternating sedimentation - and reworking processes the aragonitic matrix was separated from the silt - and sand-sized minerals. The lenses grade into touches because of bioturbation. 6. In core 1056 D2 from Hormus Bay the percentages of organic carbon, total nitrogen and total carbonate were determined. With increasing amounts of smaller grain sizes the content of organic matter increases, whereas the amount of carbonate decreases. The amounts of organic carbon and of nitrogen decrease with increasing depth, probably due to early-diagenetic decomposition processes. Most of the total nitrogen is of organic origin, only about 10% may well be inorganically fixed as ammonium-nitrogen. In the upper part of the core the C/N-ratio increases with increasing depth. This may be connected with a stronger decomposition of nitrogen-containing organic compounds. The general decrease of the C/N-ratios in the lower part of the core may be explained by the relative increase of inorganically fixed ammonium-nitrogen with decreasing content of organic matter.
Resumo:
Fossil manganese nodules and encrustations from seamount' and basin' localities in the Transdanubian Central Mountains of Hungary are lithologically, mineralogically and chemically similar to some modern marine ferromanganese oxide deposits, and show no evidence of postdepositional changes other than cementation. Five groups of deposits were encountered: Fe/Mn nodules, encrusted shells, pavements, stains, and Fe oxide encrusted intraclasts, the first three of which are specific to the 'seamount' environment and the last to the basins'. Optical and electron microprobe investigation of the samples shows them to exhibit many similarities with modern ferromanganese oxide deposits, and that many of the nodules are surrounded by a halo of dispersed ferromanganese oxides, strongly suggesting that they continued to accrete metals through the pore waters of unlithified sediments for a period after burial. By contrast, pavements which appear to have grown on hardgrounds at the sea floor show little or no evidence of derivation of metals from underlying sediments. Geochemical investigations on the deposits show the seamount' varieties to be closer in composition to most modern nodules and crusts than the basin' varieties, and that the latter are essentially manganese and trace-element-poor ferruginous deposits. Nevertheless, all can be more or less compositionally equated with modern ferromanganese oxide deposits forming in marginal Atlantic environments, which would be in accord with the proposed depositional environment of the Transdanubian Central Mountains based on other evidence.
Resumo:
Chemical composition of manganese nodules and crust collected from the Hakurei Maru Cruise GH74-5, September-October, 1974, in the Eastern Central Pacific Basin by the Geological Survey of Japan according to: Analyses and sample manganese deposits data from Cruise GH74-5 (private communication) (unpublished), Scripps Institution of Oceanography. http://www.ngdc.noaa.gov/mgg_mmbib/showref.jsp?mmbib=MIZUAA7702.
Resumo:
The cores and dredges described in this report were taken on the GH74-5 Expedition in September-October, 1974 by the Geological Survey of Japan from the R/V Hakurei Maru. A total of 36 cores, dredges and submarine camera sites have been visited. The survey conducted an investigation of the manganese deposits in the Eastern Pacific Basin and the East of the Okinawa islands