562 resultados para Caesium 137 activity per mass
Resumo:
One of the main sources of anthropogenic radionuclides in the ocean is the global fallout resulting from the nuclear tests that had been conducted by the United States, the former Soviet Union, and other countries between 1945 and 1990 mainly in the Northern Hemisphere. The most extensive fallout was observed in the middle latitudes of the Northern Hemisphere in 1963 immediately after the nuclear tests of 1961-1962 conducted by the United States and the Soviet Union. In 2006-2009, under the auspices of an agreement between the Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences and the National Center of Antarctic and Marine Research of the Ministry of Earth Sciences of India, cooperative geological and geochemical investigations were organized in several regions of the Indian Ocean. During these expeditions, the spatial distribution of anthropogenic radionuclides was investigated in the water of the Indian Ocean. The main results of these investigations are reported in this paper.
Resumo:
A methodology of experimental simulation of state of spent nuclear fuel that occurs on the sea floor due to some catastrophes or dumping is developed. Data on long-term (more than 2000 days) experiments on estimation of 85Kr and 137Cs release rate from spent nuclear fuel (fragments of irradiated UO2 pellets) were firstly obtained; these estimates prove correctness of a hypothesis offered by us in early 1990s concerning to earlier 85Kr release (by one order of magnitude higher than that of 137Cs) as compared to other fission fragments in case of loss of integrity of fuel containment as a result of corrosion on the sea floor. A method and technique of onboard 85Kr and 137Cs sampling and extraction (as well as sampling of tritium, product of triple 235U fission) and their radiometric analysis at coastal laboratories are developed. Priority data on 85Kr background in bottom layers of the Barents and Kara Seas and 137Cs and 3H in these seas (state of 2003) are presented. Models necessary for estimation of dilution of fission products of spent nuclear fuel and their transport on the floor in accident and dumping regions are developed. An experimental method for examination of state of spent nuclear fuel on the sea floor (one expedition each 2-3 years) by 85Kr release into environment (a leak tracer) is proposed; this release is an indicator of destruction of fuel containment and release of products of spent nuclear fuel in case of 235UO2 corrosion in sea water.
Resumo:
The effects of medium term (32 d) hypercapnia on the immune response of Mytilus edulis were investigated in mussels exposed to acidified (using CO2) sea water (pH 7.7, 7.5 or 6.7; control: pH 7.8). Levels of phagocytosis increased significantly during the exposure period, suggesting an immune response induced by the experimental set-up. However, this induced stress response was suppressed when mussels were exposed to acidified sea water. Acidified sea water did not have any significant effects on other immuno-surveillance parameters measured (superoxide anion production, total and differential cell counts). These results suggest that ocean acidification may impact the physiological condition and functionality of the haemocytes and could have a significant effect on cellular signalling pathways, particularly those pathways that rely on specific concentrations of calcium, and so may be disrupted by calcium carbonate shell dissolution.
Resumo:
An analysis of variations in 137Cs and 90Sr concentrations in Baltic Sea surface waters after the accident at the Chernobyl nuclear power plant was performed. Instability of 137Cs concentrations during the short-term observations was found, when they differed 2- to 3-fold. Concentrations of 90Sr appeared to be more stable; meanwhile, their deviations sometimes exceeded ranges of experimental errors. By variations in the monthly average values of radionuclide concentrations in surface waters of the Baltic Sea in 1989-1995, no trend of water self-purification was observed. Theoretical results obtained confirmed a potential of formation and propagation of patches with increased concentrations of 137Cs in the southeastern Baltic Sea. The most reliable factor that controlled the process of self-purification of Baltic Sea water appeared to be the mean annual value of radionuclide concentration. Pronounced divergences were obtained between the measured and calculated mean annual concentrations of 137Cs and 90Sr in surface waters of the Baltic Sea in 1989-2001. These divergences are explained by potential influence of waters from the Gulf of Bothnia and by other additional supplies of radionuclides to marine environment, which were not included into mathematical models.
Resumo:
Arctic vegetation is characterized by high spatial variability in plant functional type (PFT) composition and gross primary productivity (P). Despite this variability, the two main drivers of P in sub-Arctic tundra are leaf area index (LT) and total foliar nitrogen (NT). LT and NT have been shown to be tightly coupled across PFTs in sub-Arctic tundra vegetation, which simplifies up-scaling by allowing quantification of the main drivers of P from remotely sensed LT. Our objective was to test the LT-NT relationship across multiple Arctic latitudes and to assess LT as a predictor of P for the pan-Arctic. Including PFT-specific parameters in models of LT-NT coupling provided only incremental improvements in model fit, but significant improvements were gained from including site-specific parameters. The degree of curvature in the LT-NT relationship, controlled by a fitted canopy nitrogen extinction co-efficient, was negatively related to average levels of diffuse radiation at a site. This is consistent with theoretical predictions of more uniform vertical canopy N distributions under diffuse light conditions. Higher latitude sites had higher average leaf N content by mass (NM), and we show for the first time that LT-NT coupling is achieved across latitudes via canopy-scale trade-offs between NM and leaf mass per unit leaf area (LM). Site-specific parameters provided small but significant improvements in models of P based on LT and moss cover. Our results suggest that differences in LT-NT coupling between sites could be used to improve pan-Arctic models of P and we provide unique evidence that prevailing radiation conditions can significantly affect N allocation over regional scales.
Resumo:
Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased 50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors.