454 resultados para Bay of Mecklenburg


Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Serpentinized spinel peridotites of the Newfoundland margin drilled during ODP Leg 210 at Site 1277 have preserved, relic mineral compositions similar to the most depleted abyssal peridotites worldwide and different from those of the conjugate Iberian margin. The samples are derived from mass flows containing clasts of peridotite and gabbro and from in-situ basement, and are mostly mylonitic cpx-poor spinel harzburgites with Cr-rich spinels (Cr#0.35-0.66). Melting of the Newfoundland mantle occurred in the spinel peridotite field and probably exceeded the cpx-out phase boundary for some samples. Using proposed spinel peridotite melting models and experimentally derived phase diagrams, the Newfoundland harzburgites can be modeled as a residue after extraction of 14 to 20-25% melting. Basalts that are interleaved with mass flow deposits on top of the peridotite basement resemble normal to transitional mid-ocean ridge basalt. This, together with the unusually high Cr# of some spinel harzburgites suggest that the formation of basalts and partial melting of the underlying peridotite are not cogenetic. Among mantle samples some of the Newfoundland harzburgites approach mineral compositions of the Bay of island ophiolite and ophiolites from Japan that represent peridotites formed in an arc-setting. Thus, the peridotites drilled at Site 1277 may represent inherited (Caledonian or older) subarc mantle that was exhumed close to the ocean floor during the rifting evolution of the Atlantic. Compared to the spinel harzburgites from Newfoundland, the peridotites from the conjugate Iberian margin are, on average, less depleted and provide evidence for local equilibration in the plagioclase stability field. This can either be explained by an inherited, primary, Ca-richer composition of the Iberia peridotite, or, alternatively, by local melt impregnation and stagnation during continental rifting, and thus refertilizing previously depleted (arc-related) peridotite.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plankton pump samples and plankton tows (size fractions between 0.04 mm and 1.01 mm) from the eastern North Atlantic Ocean contain the following shell- and skeleton-producing planktonic and nektonic organisms, which can be fossilized in the sediments: diatoms, radiolarians, foraminifers, pteropods, heteropods, larvae of benthic gastropods and bivalves, ostracods, and fish. The abundance of these components has been mapped quantitatively in the eastern North Atlantic surface waters in October - December 1971. More ash (after ignition of the organic matter, consisting mostly of these components) per cubic meter of water is found close to land masses (continents and islands) and above shallow submarine elevations than in the open ocean. Preferred biotops of planktonic diatoms in the region described are temperate shallow water and tropical coastal upwelling areas. Radiolarians rarely occur close to the continent, but are abundant in pelagic warm water masses, even near islands. Foraminifers are similar to the radiolarians, rarer in the coastal water mass of the continent than in the open ocean or off oceanic islands. Their abundance is highest outside the upwelling area off NW Africa. Molluscs generally outnumber planktonic foraminifers, implying that the carbonate cycle of the ocean might be influenced considerably by these animals. The molluscs include heteropods, pteropods, and larvae of benthic bivalves and gastropods. Larvae of benthic molluscs occur more frequently close to continental and island margins and above submarine shoals (in this case mostly guyots) than in the open ocean. Their size increases, but they decrease in number with increasing distance from their area of origin. Ostracods and fish have only been found in small numbers concentrated off NW Africa. All of the above-mentioned components occur in higher abundances in the surface water than in subsurface waters. They are closely related to the hydrography of the sampled water masses (here defined through temperature measurements). Relatively warm water masses of the southeastern branches of the Gulf Stream system transport subtropical and southern temperate species to the Bay of Biscay, relatively cool water masses of the Portugal and Canary Currents carry transitional faunal elements along the NW African coast southwards to tropical regions. These mix in the northwest African upwelling area with tropical faunal elements which are generally assumed to live in the subsurface water masses and which probably have been transported northwards to this area by a subsurface counter current. The faunas typical for tropical surface water masses are not only reduced due to the tongue of cool water extending southwards along the coast, but they are also removed from the coastal zone by the upwelling subsurface water masses carrying their own shell and skeleton assemblages. Tropical water masses contain much more shelland skeleton-producing plankters than subtropical and temperate ones. The climatic conditions found at different latitudes control the development and intensity of a separate continental coastal water mass with its own plankton assemblages. Extent of this water mass and steepness of gradients between the pelagic and coastal environment limit the occurrence of pelagic plankton close to the continental coast. A similar water mass in only weakly developed off oceanic islands.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sr and Nd isotopic compositions have been measured on the lithic fraction of last climatic cycle sediments from the North Atlantic (~40°N/~60°N), in order to identify the origins of the particles. From the reconstruction of their transport pathways, we deduce the mechanisms that explain their distributions. The main source regions are the Canadian shield (mostly the area of Baffin Bay and western Greenland), the Scandinavian shield, the European region (British Isles and Bay of Biscay), and Iceland. We observe a significant glacial/interglacial contrast, characterized by a dominant Icelandic input via near-bottom transport by North Atlantic Deep Water (NADW) during the interglacials and a largely continent-derived contribution of surface-transported, ice-rafted detritus (IRD) during the glacial period. During the last glacial period, the Heinrich events (abrupt, massive discharges of IRD) originated not only from the Laurentide ice sheet as heretofore envisioned but also from other sources. Three other major North Atlantic ice sheets (Fennoscandian, British Isles, and Icelandic) probably surged simultaneously, discharging ice and IRD into the North Atlantic. As opposed to theories implying a unique, Laurentide origin [Gwiazda et al., 1996 doi:10.1029/95PA03135] driven by an internal mechanism [MacAyeal, 1993 doi:10.1029/93PA02200], we confirm that the Icelandic and the Fennoscandian ice sheets also surged as recently proposed by other authors, and we here also distinguish a possible detrital contribution from the British Isles ice sheet. This pan-North Atlantic phenomenon thus requires a common regional, external forcing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two ash horizons have been identified in Hole 549, one in the upper Paleocene (basal NP9), the other in the upper Eocene (NP18); both are mixed lithic crystal tuffs of rhyolitic composition. These tuffs are absent in Hole 550 owing to unconformities, but the basal Eocene (NP10) of Hole 550 includes a series of over 50 thin bentonite layers. Intermediate plagioclase associated with these bentonites indicates that the original ash was of basaltic to andesitic composition. The bentonites are absent in Hole 549, probably because of an unconformity, but they have been identified in Hole 401 (Leg 48, Bay of Biscay). Two of the pyroclastic phases can be matched with phases previously reported for the North Sea Basin. The bentonites of Site 550 are probably equivalent to the widespread "ash series" of northwestern Europe, which may therefore be regarded as being lower Eocene in terms of Martini's calcareous nannoplankton zonation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study presents neodymium isotope and elemental data for cleaned planktonic foraminifera from ODP site 758 in the southernmost reaches of the Bay of Bengal in the north-east Indian Ocean. Cleaning experiments using oxidative-reductive techniques suggest that diagenetic Fe-Mn oxyhydroxide coatings can be effectively removed, and that the measured Nd isotope composition reflects the composition of seawater from which the foraminiferal calcium carbonate was precipitated. Modern core-top Pulleniatina obliquiloculata and Globorotalia menardii give epsilon-Nd values of 310.12 +/- 0.16 and 310.28 +/- 0.16, respectively, indistinguishable from recent direct measurements of surface seawater in this area. A high-resolution Nd isotope record obtained from G. menardii for the past 150 kyr shows systematic variations (Delta epsilon-Nd = 3) on glacial-interglacial timescales. The timing of those variations shows a remarkable correspondence with the global oxygen isotope record, which suggests a process controlling the Nd isotope composition that responds in phase with global climate cycles. Palaeoclimate reconstruction indicates that during the last glacial maximum changes in monsoon circulation resulted in a reduction in rainfall over the Indian subcontinent, and a decrease in the flux of river water delivered to the Bay of Bengal. Thus, changes in the riverine input of Nd, a change in either flux or composition, most likely caused the isotope variations, although changes in dust source or local ocean circulation may have also played a role. These results clearly establish a link between climate change and variations in radiogenic isotopes in the oceans, and illustrate the potential of Nd isotopes in foraminifera for highresolution palaeoceanographic reconstruction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Within the last decade, several early Eocene hyperthermals have been detected globally. These transient warming events have mainly been characterized geochemically - using stable isotopes, carbonate content measurements or XRF core scanning - yet detailed micropaleontological records are sparse, limiting our understanding of the driving forces behind hyperthermals and of the contemporaneous paleoceanography. Here, detailed geochemical and quantitative benthic foraminiferal records are presented from lower Eocene pelagic sediments of Deep Sea Drilling Project Site 401 (Bay of Biscay, northeast Atlantic). In calcareous nannofossil zone NP11, several clay-enriched levels correspond to negative d13C and d18O bulk-rock excursions with amplitudes of up to ~0.75 per mil, suggesting that significant injections of 12C-enriched greenhouse gasses and small temperature rises took place. Coeval with several of these hyperthermal events, the benthic foraminiferal record reveals increased relative abundances of oligotrophic taxa (e.g. Nuttallides umbonifera) and a reduction in the abundance of buliminid species followed by an increase of opportunistic taxa (e.g. Globocassidulina subglobosa and Gyroidinoides spp.). These short-lived faunal perturbations are thought to be caused by reduced seasonality of productivity resulting in a decreased Corg flux to the seafloor. Moreover, the sedimentological record suggests that an enhanced influx of terrigenous material occurred during these events. Additionally, the most intense d13C decline (here called level d) gives rise to a small, yet pronounced long-term shift in the benthic foraminiferal composition at this site, possibly due to the reappraisal of upwelling and the intensification of bottom water currents. These observations imply that environmental changes during (smaller) hyperthermal events are also reflected in the composition of deep-sea benthic communities on both short (<100 kyr) and longer time scales. We conclude that the faunal patterns of the hyperthermals observed at Site 401 strongly resemble those observed in other deep-sea early Paleogene hyperthermal deposits, suggesting that similar processes have driven them.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Greenland stadial/interstadial cycles are known to affect the North Atlantic's hydrography and overturning circulation and to cause ecological changes on land (e.g., vegetation). Hardly any information, directly expressed as diversity indices, however, exists on the impacts of these millennial-scale variations on the marine flora and fauna. We calculated three diversity indices (species richness, Shannon diversity index, Hurlbert's probability of interspecific encounter) for the planktonic foraminifer fauna found in 18 deep-sea cores covering a time span back to 60 ka. Clear differences in diversity response to the abrupt climate change can be observed and some records can be grouped accordingly. Core SO82-05 from the southern section of the subpolar gyre, the cores along the British margin and core MD04-2845 in the Bay of Biscay show two modes of diversity distribution, with reduced diversity (uneven fauna) during cold phases and the reverse (even fauna) during warm phases. Along the Iberian margin high species diversity prevailed throughout most of the glacial period. The exceptions were the Heinrich stadials when the fauna abruptly shifted from an even to an uneven or less even fauna. Diversity changes were often abrupt, but revealed a high resilience of the planktonic foraminifer faunas. The subtropical gyre waters seem to buffer the climatic effects of the Heinrich events and Greenland Stadials allowing for a quick recovery of the fauna after such an event. The current work clearly shows that planktonic foraminifer faunas quickly adapt to climate change, albeit with a reduced diversity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

According to geochemical analyses carbonaceous sediments from deep basins of the Baltic Sea containing 3-5% of organic carbon are enriched in some metals such as Cu, Mo, Ni, Pb, Zn, V, and U relative to shallow-water facies of the Bay of Finland. These metals also enrich (relative to background values in clayey rocks) ancient carbonaceous shales, where the average Cu and V contents are slightly higher and that of Mo, Pb, and Zn lower than in deep-sea carbonaceous sediments of the Baltic Sea. In addition, the deep-sea carbonaceous sediments of the Baltic Sea are enriched (but less notably than ancient shales) in Ag, As, Bi, and Cd. These data confirm previous assumptions that carbonaceous sediments accumulating now in seas and oceans can be considered as recent analogs of ancient metalliferous shales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years a global increase in jellyfish (i.e. Cnidarians and Ctenophores) abundance and a rise in the recurrence of jellyfish outbreak events have been largely debated, but a general consensus on this matter has not been achieved yet. Within this debate, it has been generally recognised that there is a lack of reliable data that could be analysed and compared to clarify whether indeed jellyfish are increasing throughout the world ocean as a consequence of anthropogenic impact and hydroclimatic variability. Here we describe different jellyfish data sets produced within the EU program EUROBASIN, which have been assembled with the aim of presenting an up to date overview on the diversity and standing stocks of North Atlantic jellyfish. Abundance and species composition were determined in samples collected in the epipelagic layer (0- 200m), using a net well adapted to quantitatively catching gelatinous zooplankton. The samples were collected in spring-summer (April-August) 2010-2013, in inshore and offshore North Atlantic waters, between 59-68LatN and 62W-5ELong. Jellyfish were also identified and counted in samples opportunistically collected by other sampling gears in the same region and in two coastal stations in the Bay of Biscay and in the Gulf of Cadiz. Continuous Plankton Recorder (CPR) samples collected in 2009-2012 were re-analysed with the aim of identifying the time and location of jellyfish blooms across the North Atlantic basin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A distinctive low-carbonate interval interrupts the continuous limestone-marl alternation of the deep-marine Gorrondatxe section at the early Lutetian (middle Eocene) C21r/C21n Chron transition. The interval is characterized by increased abundance of turbidites and kaolinite, a 3 per mil decline in the bulk d13C record, a >1 per mil decline in benthic foraminiferal d13C followed by a gradual recovery, a distinct deterioration in foraminiferal preservation, high proportions of warm-water planktic foraminifera and opportunistic benthic foraminifera, and reduced trace fossil and benthic foraminiferal diversity, thus recording a significant environmental perturbation. The onset of the perturbation correlates with the C21r-H6 event recently defined in the Atlantic and Pacific oceans, which caused a 2°C warming of the seafloor and increased carbonate dissolution. The perturbation was likely caused by the input of 13C-depleted carbon into the ocean-atmosphere system, thus presenting many of the hallmarks of Paleogene hyperthermal deposits. However, from the available data it is not possible to conclusively state that the event was associated with extreme global warming. Based on our analysis, the perturbation lasted 226 kyr, from 47.44 to 47.214 Ma, and although this duration suggests that the triggering mechanism may have been similar to that of the Paleocene-Eocene Thermal Maximum (PETM), the magnitude of the carbon input and the subsequent environmental perturbation during the early Lutetian event were not as severe as in the PETM.