287 resultados para Batumi Seep
Resumo:
The presence of gas hydrates on the Blake Ridge diapir, northeastern Atlantic Ocean, offers an opportunity to study the impact of methane seepage on the ecology and geochemistry of benthic foraminifera in the late Holocene. Three push cores, covering a time span of ~ 1000 yrs, were retrieved from three distinct microhabitats at the top of the diapir at a water depth of ~ 2150 m: (i) sediments away from seepage (control core), (ii) sediments overlain by clusters of methanotrophic and thiotrophic bivalves, and (iii) chemoautotrophic microbial mats. The foraminiferal assemblages at the two seep sites are marked by a reduction in benthic foraminiferal species diversity, coupled with a near-absence of agglutinated species. However, an opportunistic population rise in CH4- or H2S-tolerant calcareous species (e.g., Globocassidulina subglobosa and Cassidulina laevigata) that utilize the abundant trophic resources at the seeps has led to an increase in the overall assemblage density there. The delta18O and delta13C values of three species of benthic foraminifera - Gyroidinoides laevigatus, Globocassidulina subglobosa, and Uvigerina peregrina - and the planktonic species Globorotalia menardii were acquired from all three cores. The benthic species from methane seeps yield delta13C values of 0.1 to - 4.2 (per mil VPDB), that are distinctly more 13C-depleted relative to the delta13C of 0.4 to - 1.0 (per mil VPDB) at the control (off seep) site. The species from a mussel-bed site exhibit more negative delta13C values than those from microbial mats, possibly reflecting different food sources and higher rate of anaerobic oxidation of methane. The positive delta13C values in the paired planktonic species suggest that authigenic carbonate precipitation did not overprint the observed 13C depletions. Hence the probable cause of negative delta13C of benthic foraminifera is primary calcification from Dissolved Inorganic Carbon (DIC) containing mixed carbon fractions from (a) highly 13C-depleted, microbially-oxidized methane and (b) a seawater source.
Resumo:
To investigate the use of benthic foraminifera as a means to document ancient methane release, we determined the stable isotopic composition of tests of live (Rose Bengal stained) and dead specimens of epibenthic Fontbotia wuellerstorfi, preferentially used in paleoceanographic reconstructions, and of endobenthic high-latitude Cassidulina neoteretis and Cassidulina reniforme from a cold methane-venting seep off northern Norway. We collected foraminiferal tests from three push cores and nine multiple cores obtained with a remotely operated vehicle and a video-guided multiple corer, respectively. All sampled sites except one control site are situated at the Håkon Mosby mud volcano (HMMV) on the Barents Sea continental slope in 1250 m water depth. At the HMMV in areas densely populated by pogonophoran tube worms, d13C values of cytoplasm-containing epibenthic F. wuellerstorfi are by up to 4.4 per mil lower than at control site, thus representing the lowest values hitherto reported for this species. Live C. neoteretis and C. reniforme reach d13C values of -7.5 and -5.5 per mil Vienna Pee Dee Belemnite (VPDB), respectively, whereas d13C values of their empty tests are higher by 4 per mil and 3 per mil. However, d13C values of empty tests are never lower than those of stained specimens, although they are still lower than empty tests from the control site. This indicates that authigenic calcite precipitates at or below the sediment surface are not significantly influencing the stable isotopic composition of foraminiferal shells. The comparatively high d13C results rather from upward convection of pore water and fluid mud during active methane venting phases at these sites. These processes mingle tests just recently calcified with older ones secreted at intermittent times of less or no methane discharge. Since cytoplasm-containing specimens of suspension feeder F. wuellerstorfi are almost exclusively found attached to pogonophores, which protrude up to 3 cm above the sediment, and d13C values of bottom-water-dissolved inorganic carbon (DIC) are not significantly depleted, we conclude that low test d13C values of F. wuellerstorfi are the result of incorporation of heavily 13C-depleted methanotrophic biomass that these specimens feed on rather than because of low bottom water d13CDIC. Alternatively, the pogonophores, which are rooted at depth in the upper sediment column, may serve as a conduit for depleted d13CDIC that ultimately influences the calcification process of F. wuellerstorfi attached to the pogonophoran tube well above the sediment/water interface. The lowest d13C of live specimens of the endobenthic C. neoteretis and C. reniforme are within the range of pore water d13CDIC values, which exceed those that could be due to organic matter decomposition, and thus, in fact, document active methane release in the sediment.
Resumo:
We provide a compilation of downward fluxes (total mass, POC, PON, BSiO2, CaCO3, PIC and lithogenic/terrigenous fluxes) from over 6000 sediment trap measurements distributed in the Atlantic Ocean, from 30 degree North to 49 degree South, and covering the period 1982-2011. Data from the Mediterranean Sea are also included. Data were compiled from different sources: data repositories (BCO-DMO, PANGAEA), time series sites (BATS, CARIACO), published scientific papers and/or personal communications from PI's. All sources are specifed in the data set. Data from the World Ocean Atlas 2009 were extracted to provide each flux observation with contextual environmental data, such as temperature, salinity, oxygen (concentration, AOU and percentage saturation), nitrate, phosphate and silicate.
Resumo:
Large amounts of the greenhouse gas methane are released from the seabed to the water column where it may be consumed by aerobic methanotrophic bacteria. This microbial filter is consequently the last marine sink for methane before its liberation to the atmosphere. The size and activity of methanotrophic communities, which determine the capacity of the water column methane filter, are thought to be mainly controlled by nutrient and redox dynamics, but little is known about the effects of ocean currents. Here, we report measurements of methanotrophic activity and biomass (CARD-FISH) at methane seeps west of Svalbard, and related them to physical water mass properties (CTD) and modelled current dynamics. We show that cold bottom water containing a large number of aerobic methanotrophs was rapidly displaced by warmer water with a considerably smaller methanotrophic community. This water mass exchange, caused by short-term variations of the West Spitsbergen Current, constitutes a rapid oceanographic switch severely reducing methanotrophic activity in the water column. Strong and fluctuating currents are widespread oceanographic features common at many methane seep systems and are thus likely to globally affect methane oxidation in the ocean water column.
Resumo:
Authigenic carbonate deposits have been sampled with the remotely operated vehicle 'MARUM-QUEST 4000 m' from five methane seeps between 731 and 1823 m water depth along the convergent Makran continental margin, offshore Pakistan (northern Arabian Sea). Two seeps on the upper slope are located within the oxygen minimum zone (OMZ; ca. 100 to 1100 m water depth), the other sites are situated in oxygenated water below the OMZ (below 1100 m water depth). The carbonate deposits vary with regard to their spatial extent, sedimentary fabrics, and associated seep fauna: Within the OMZ, carbonates are spatially restricted and associated with microbial mats, whereas in the oxygenated zone below the OMZ extensive carbonate crusts are exposed on the seafloor with abundant metazoans (bathymodiolin mussels, tube worms, galatheid crabs). Aragonite and Mg-calcite are the dominant carbonate minerals, forming common early diagenetic microcrystalline cement and clotted to radial-fibrous cement. The delta18O carbonate values range from 1.3 to 4.2 per mil V-PDB, indicating carbonate precipitation at ambient bottom-water temperature in shallow sediment depth. Extremely low delta13Ccarbonate values (as low - 54.6per mil V-PDB) point to anaerobic oxidation of methane (AOM) as trigger for carbonate precipitation, with biogenic methane as dominant carbon source. Prevalence of biogenic methane in the seepage gas is corroborated by delta13C methane values ranging from - 70.3 to - 66.7per mil V-PDB, and also by back-calculations considering delta 13C methane values of carbonate and incorporated lipid biomarkers.
Resumo:
The pore water chemistry of mud volcanoes from the Olimpi Mud Volcano Field and the Anaximander Mountains in the eastern Mediterranean Sea have been studied for three major purposes: (1) modes and velocities of fluid transport were derived to assess the role of (upward) advection, and bioirrigation for benthic fluxes. (2) Differences in the fluid chemistry at sites of Milano mud volcano (Olimpi area) were compiled in a map to illustrate the spatial heterogeneity reflecting differences in fluid origin and transport in discrete conduits in near proximity. (3) Formation water temperatures of seeping fluids were calculated from theoretical geothermometers to predict the depth of fluid origin and geochemical reactions in the deeper subsurface. No indications for downward advection as required for convection cells have been found. Instead, measured pore water profiles have been simulated successfully by accounting for upward advection and bioirrigation. Advective flow velocities are found to be generally moderate (3-50 cm/y) compared to other cold seep areas. Depth-integrated rates of bioirrigation are 1-2 orders of magnitude higher than advective flow velocities documenting the importance of bioirrigation for flux considerations in surface sediments. Calculated formation water temperatures from the Anaximander Mountains are in the range of 80 to 145 °C suggesting a fluid origin from a depth zone associated with the seismic decollement. It is proposed that at that depth clay mineral dehydration leads to the formation and advection of fluids reduced in salinity relative to sea water. This explains the ubiquitous pore water freshening observed in surface sediments of the Anaximander Mountain area. Multiple fluid sources and formation water temperatures of 55 to 80 °C were derived for expelled fluids of the Olimpi area.
Resumo:
The Hakon Mosby Mud Volcano is a highly active methane seep hosting different chemosynthetic communities such as thiotrophic bacterial mats and siboglinid tubeworm assemblages. This study focuses on in situ measurements of methane fluxes to and from these different habitats, in comparison to benthic methane and oxygen consumption rates. By quantifying in situ oxygen, methane, and sulfide fluxes in different habitats, a spatial budget covering areas of 10-1000 -m diameter was established. The range of dissolved methane efflux (770-2 mmol m-2 d-1) from the center to the outer rim was associated with a decrease in temperature gradients from 46°C to < 1°C m-1, indicating that spatial variations in fluid flow control the distribution of benthic habitats and activities. Accordingly, total oxygen uptake (TOU) varied between the different habitats by one order of magnitude from 15 mmol m-2 d-1 to 161 mmol m-2 d-1. High fluid flow rates appeared to suppress benthic activities by limiting the availability of electron acceptors. Accordingly, the highest TOU was associated with the lowest fluid flow and methane efflux. This was most likely due to the aerobic oxidation of methane, which may be more relevant as a sink for methane as previously considered in submarine ecosystems.