269 resultados para Arsenic hyperaccumulation
Resumo:
The book is devoted to study of diagenetic changes of organic matter and mineral part of sediments and interstitial waters of the Pacific Ocean due to physical-chemical and microbiological processes. Microbiological studies deal with different groups of bacteria. Regularities of quantitative distribution and the role of microorganisms in geochemical processes are under consideration. Geochemical studies highlight redox processes of the early stages of sediment diagenesis, alterations of interstitial waters, regularities of variations in chemical composition of iron-manganese nodules.
Resumo:
A distinct Pliocene eastern Mediterranean sapropel (i-282), recovered from three Ocean Drilling Program (ODP) Leg 160 Sites, has been investigated for its organic and inorganic composition. This sapropel is characterized by high organic carbon (Corg) and trace element contents, and the presence of isorenieratene derivatives. The latter suggests that the base of the photic zone was sulphidic during formation of the sapropel. Combined with evidence of bottom water anoxia (preservation of laminae, high redox-sensitive trace element contents, and the abundance and isotopic composition of pyrite) this leads to the tentative conclusion that almost the entire water column may have been anoxic. This anoxia resulted from high productivity and not from stagnation, because an approximation of the trace element budget during sapropel formation shows that water exchange with the western Mediterranean is needed. Entire water column anoxia has been suggested earlier for several black shales. With regard to the depositional environment and the Corg content, however, only the Cenomanian=Turonian Boundary Event (CTBE) black shales appear to be comparable to this sapropel. The proposed trace element removal mechanism of scavenging and (co-)precipitation in an anoxic water column, is thought to be similar for both types of deposits. The ultimate trace element source for the sapropel, however, is seawater, whereas it is hydrothermal and fluvial input for CTBE black shales (because they have a larger temporal and spatial distribution). Nonetheless, the Corg-rich eastern Mediterranean Pliocene sapropel discussed here may be considered to be a younger analogue of CTBE black shales.
Resumo:
These data are from a field experiment conducted in a shallow alluvial aquifer along the Colorado River in Rifle, Colorado, USA. In this experiment, bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Data include names and location data for boreholes, geochemical data for all the boreholes between June 1, 2010 and January 1, 2011, microarray data provided as signal to noise ratio (SNR) for individual microarray probes, microarray data provided as signal to noise ratio (SNR) by Genus.
Resumo:
To investigate the geochemistry of trace elements in coals from the Dingji Mine of the Huainan Coalfield, Anhui province, China, 416 borehole samples of coal, one parting, two floor and two roof mudstones were collected from 9 minable coal seams in 24 boreholes drilled during exploration. The abundances of 47 elements in each sample were determined by various instruments. The boron concentration in the coals suggests that marine influence decreased from coal seam 1 to 13-1. The geometric means of the elements Sn, Bi, Sb, and B are higher than the average for the corresponding elements in the coals from China, the U.S., and world. The enrichment of certain elements in the Shanxi or Upper Shihezi Formations is related to their depositional environment. The roof, floor and parting samples have higher contents of some elements than coal seams. The mineral matters in the coals from the Dingji Mine were found to consist mainly of granular quartz, clay minerals, and carbonate minerals. The elements are classified into two groups based on their stratigraphic distribution from coal seam 1 to 13-1, and the characteristics of each group are discussed. Based on the correlation coefficients of elemental concentrations with ash yield, four groups of elements with different affinities were identified.
Resumo:
This study was aimed at reconstructing a sequence of events in the magmatic and metamorphic evolution of peridotites, gabbroids, and trondhjemites from internal oceanic complexes of the Ashadze and Logachev hydrothermal vent fields. Collections of plutonic rocks from Cruises 22 and 26 of R/V "Professor Logachev", Cruise 41 of R/V "Akademik Mstislav Keldysh", and from the Serpentine Russian-French expedition aboard R/V "Pourquoi pas?" were objects of this study. Data reported here suggest that the internal oceanic complexes of the Ashadze and Logachev fields formed via the same scenario in these two regions of the Mid-Atlantic Ridge. On the other hand, an analysis of petrological and geochemical characteristics of the rocks indicated that the internal oceanic complexes of the MAR axial zone between 12°58'N and 14°45'N show pronounced petrological and geochemical heterogeneity manifested in variations in degree of depletion of mantle residues and in Nd isotopic compositions of rocks from the gabbro-peridotite association. Trondhjemites from the Ashadze hydrothermal field can be considered as partial melting products of gabbroids under influence of hydrothermal fluids. It was supposed that presence of trondhjemites in internal oceanic complexes of MAR can be used as a marker for the highest temperature deep-rooted hydrothermal systems. Perhaps, the region of the MAR axial zone, in which petrologically and geochemically contrasting internal oceanic complexes are spatially superimposed, serves as an area for development of large hydrothermal clusters with considerable ore-forming potential.
Resumo:
Ceara Rise, located east the Amazon River mouth, is covered with a thick blanket of pelagic carbonate and hemipelagic terrigenous sediment. The terrigenous component has been extracted from 57 bulk sediment samples at Ocean Drilling Program (ODP) Sites 925 and 929 on Ceara Rise to obtain a Cenozoic record of riverine discharge from northern South America. From the early Eocene to early Miocene (55-20 Ma), terrigenous accumulation was dominated by moderate amounts of generally large-grained, gray to green sediment especially depleted in elements that are enriched in post-Archaean shale (e.g. Cs, Th, Yb). However, pulsed inputs of relatively small-grained, gray to green terrigenous sediment less depleted in the above elements occurred in the late Eocene and Oligocene. The accumulation of terrigenous sediment decreased significantly until 16.5 Ma. In the middle Miocene (16.5-13 Ma), terrigenous accumulation was dominated by small amounts of small-grained, tan sediment notably depleted in Na and heavy rare earth elements. The accumulation rate of terrigenous sediment increased markedly from the latest Miocene (10 Ma) to the present day, a change characterized by deposition of gray-green sediment enriched in elements that are enriched in post-Archaean shale. Observed changes in terrigenous sediment at Ceara Rise record tectonism and erosion in northern South America. The Brazil and Guyana shields supplied sediment to the eastern South American margin until the middle Miocene (20-16.5 Ma) when a period of thrusting, shortening and uplift changed the source region, probably first to highly weathered and proximal Phanerozoic sediments. By the late Miocene (9 Ma), there was a transcontinental connection between the Andes and eastern South America. Weathering products derived from the Andes have increasingly dominated terrigenous deposition at Ceara Rise since the Late Miocene and especially since the late Pliocene.
Resumo:
Ocean drilling has revealed that, although a minor mineral phase, native Cu ubiquitously occurs in the oceanic crust. Cu isotope systematics for native Cu from a set of occurrences from volcanic basement and sediment cover of the oceanic crust drilled at several sites in the Pacific, Atlantic and Indian oceans constrains the sources of Cu and processes that produced Cu**0. We propose that both hydrothermally-released Cu and seawater were the sources of Cu at these sites. Phase stability diagrams suggest that Cu**0 precipitation is favored only under strictly anoxic, but not sulfidic conditions at circum-neutral pH even at low temperature. In the basaltic basement, dissolution of primary igneous and potentially hydrothermal Cu-sulfides leads to Cu**0 precipitation along veins. The restricted Cu-isotope variations (delta 65Cu = 0.02-0.19 per mil) similar to host volcanic rocks suggest that Cu**0 precipitation occurred under conditions where Cu+-species were dominant, precluding Cu redox fractionation. In contrast, the Cu-isotope variations observed in the Cu**0 from sedimentary layers yield larger Cu-isotope fractionation (delta 65Cu = 0.41-0.95 per mil) suggesting that Cu**0 precipitation involved redox processes during the diagenesis, with potentially seawater as the primary Cu source. We interpret that native Cu precipitation in the basaltic basement is a result of low temperature (20°-65 °C) hydrothermal processes under anoxic, but not H2S-rich conditions. Consistent with positive delta 65Cu signatures, the sediment cover receives major Cu contribution from hydrogenous (i.e., seawater) sources, although hydrothermal contribution from plume fallout cannot be entirely discarded. In this case, disseminated hydrogenous and/or hydrothermal Cu might be diagenetically remobilized and reprecipitated as Cu**0 in reducing microenvironment.