515 resultados para Anomalies of surface temperature


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence for abrupt climate changes on millennial and shorter timescales is widespread in marine and terrestrial climate records (Dansgard et al., 1993, doi:10.1038/364218a0; Bond et al., 1993, doi:10.1038/365143a0; Charles et al., 1996, doi:10.1016/0012-821X(96)00083-0, Bard et al., 1997, doi:10.1038/385707a0). Rapid reorganization of ocean circulation is considered to exert some control over these changes (Broecker et al., 1985, doi:10.1038/315021a0), as are shifts in the concentrations of atmospheric greenhouse gases (Broecker, 1994, doi:10.1038/372421a0). The response of the climate system to these two influences is fundamentally different: slowing of thermohaline overturn in the North Atlantic Ocean is expected to decrease northward heat transport by the ocean and to induce warming of the tropical Atlantic (Crowley, 1992, doi:10.1029/92PA01058; Manabe and Stouffer, 1997, doi:10.1029/96PA03932), whereas atmospheric greenhouse forcing should cause roughly synchronous global temperature changes (Manabe et al., 1991, doi:10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2). So these two mechanisms of climate change should be distinguishable by the timing of surface-water temperature variations relative to changes in deep-water circulation. Here we present a high-temporal-resolution record of sea surface temperatures from the western tropical North Atlantic Ocean which spans the past 29,000 years, derived from measurements of temperature-sensitive alkenone unsaturation in sedimentary organic matter. We find significant warming is documented for Heinrich event H1 (16,900-15,400 calendar years bp) and the Younger Dryas event (12,900-11,600 cal. yr bp), which were periods of intense cooling in the northern North Atlantic. Temperature changes in the tropical and high-latitude North Atlantic are out of phase, suggesting that the thermohaline circulation was the important trigger for these rapid climate changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Late Quaternary summer sea surface temperatures (SSTs) have been derived from radiolarian assemblages in the East Atlantic sector of the Southern Ocean. In the subantarctic and the polar frontal zone, glacial SSTs (oxygen isotope stages 2, 4, 6, and 8) were 3°-5°C cooler than today, indicating northward displacements of the isotherms about 2°-4° of latitudes. During interglacials, SSTs almost reached modern levels (oxygen isotope stages 7 and 9) or exceeded them by 2°-3°C (oxygen isotope stages 1 and 5.5). In the subantarctic Atlantic Ocean, changes in SST and calcium carbonate content of the sediment precede variations in global ice volume in the range of the main Milankovitch frequencies. Comparisons with the timing of North Atlantic Deep Water (NADW) proxy records suggests that this early response in the subantarctic Atlantic Ocean is not triggered by the flux of NADW to the Southern Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Suborbital climate variability during the last glacial period is suggested to have involved a 1500-year pacing cycle, but the expression and spatial distribution of the ~1500-year oscillation during interglacials remains unclear. We generated a multidecade resolution record of alkenone sea surface temperature (SST) in the northwestern Pacific off central Japan during the Holocene. The SST record showed centennial and millennial variability with an amplitude of ~1 °C throughout the entire Holocene. Spectral analysis for SST variation revealed a statistically significant peak with 1470-year periodicity. The SST variation partly correlated with the variations of ice-rafted hematite-stained grain content in North Atlantic sediments. These findings indicate that the mean latitude of the Kuroshio Extension has varied on a 1500-year cycle, and suggest that a climatic link exists between the North Pacific gyre system and the high-latitude North Atlantic thermohaline circulation. The regular pacing at 1500-year intervals seen throughout both the Holocene and the last glacial period suggests that the oscillation was a response to external forcing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In spite of the important role played by the Southern Ocean in global climate, the few existing paleoceanographic records in the east Pacific sector do not extend beyond one glacial-interglacial cycle, hindering circumpolar comparison of past sea surface temperature (SST) evolution in the Southern Ocean. Here we present three alkenone-based Pleistocene SST records from the subantarctic and subtropical Pacific. We use a regional core top calibration data set to constrain the choice of calibrations for paleo SST estimation. Our core top data confirm that the alkenone-based UK37 and UK'37 values correlate linearly with the SST, in a similar fashion as the most commonly used laboratory culture-based calibrations even at low temperatures (down to ~1°C), rendering these calibrations appropriate for application in the subantarctic Pacific. However, these alkenone indices yield diverging temporal trends in the Pleistocene SST records. On the basis of the better agreement with d18O records and other SST records in the subantarctic Southern Ocean, we propose that the UK37 is a better index for SST reconstruction in this region than the more commonly used UK'37 index. The UK37-derived SST records suggest glacial cooling of ~8°C and ~4°C in the subantarctic and subtropical Pacific, respectively. Such extent of subantarctic glacial cooling is comparable to that in other sectors of the Southern Ocean, indicating a uniform circumpolar cooling during the Pleistocene. Furthermore, our SST records also imply massive equatorward migrations of the Antarctic Circumpolar Current (ACC) frontal systems and an enhanced transport of ACC water to lower latitudes during glacials by the Peru-Chile Current.