271 resultados para Anomalias geoquímicas naturais (U-Nb-Mo) (Zn)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The book is devoted to geology of the Philippine Sea floor. This region is studied most extensively among other marginal seas of the Pacific Ocean. Rocks of the sedimentary and basalt layers within this sea have been studied during five legs of D/S Glomar Challenger. International geological expedition on board R/V Dmitry Mendeleev carried out according to the Project ''Ophiolites of Continents and Comparable Rocks of the Ocean Floor''obtained unique collection of rocks from the second and third layers of the ocean crust in the Philippine Sea. The book provides detailed petrographic and geochemical description of igneous and sedimentary formations from the Philippine Sea and compares them with rocks of the continental ophiolite association. An analysis of structure and history of the ocean crust formation in the region is based on all known geological information. The main periods of tectonic movement activation and nature of their manifestations within the sea are shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New data on lithology and stratigraphy of Cenozoic sediments from the Clarion Transform Fault Zone (Pacific Ocean) have been obtained on the base of polygon studies. It has been established that on different blocks (uplifted and subsided) of the Clarion tectonic structure deposits of different age (Eocene to Quaternary) occur. Unconsolidated sediments have been deposited under pelagic conditions since Eocene (probably, since Early Cretaceous) until now. Their mineral composition and content of different ore components are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of eutrophication on short term changes in the microbial community were investigated using high resolution lipid biomarker and trace metal data for sediments from the eutrophic Lake Rotsee (Switzerland). The lake has been strongly influenced by sewage input since the 1850s and is an ideal site for studying an anthropogenically altered ecosystem. Historical remediation measures have had direct implications for productivity and microbial biota, leading to community composition changes and abundance shifts. The higher sewage and nutrient input resulted in a productivity increase, which led predominantly to a radiation in diatoms, primary producers and methanogens between about 1918 and 1921, but also affected all microorganism groups and macrophytes between about 1958 and 1972. Bacterial biomass increased in 1933, which may have been related to the construction of a mechanical sewage treatment plant. Biomarkers also allowed tracing of fossil organic matter/biodegraded oil contamination in the lake. Stephanodiscus parvus, Cyclotella radiosa and Asterionella formosa were the dominant sources of specific diatom biomarkers. Since the 1850s, the cell density of methanogenic Archaea (Methanosaeta spp.) ranged within ca. 0.5-1.8 x 10**9 cells/g dry sediment and the average lipid content of Rotsee Archaea was ca. 2.2 fg iGDGTs/cell. An altered BIT index (BITCH), indicating changes in terrestrial organic matter supply to the lake, is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basement intersected in Holes 525A, 528, and 527 on the Walvis Ridge consists of submarine basalt flows and pillows with minor intercalated sediments. These holes are situated on the crest and mid- and lower NW flank of a NNW-SSE-trending ridge block which would have closely paralleled the paleo mid-ocean ridge. The basalts were erupted approximately 70 Ma, a date consistent with formation at the paleo mid-ocean ridge. The basalt types vary from aphyric quartz tholeiites on the Ridge crest to highly Plagioclase phyric olivine tholeiites on the flank. These show systematic differences in incompatible trace element and isotopic composition, and many element and isotope ratio pairs form systematic trends with the Ridge crest basalts at one end and the highly phyric Ridge flank basalts at the other. The low 143Nd/144Nd (0.51238) and high 87Sr/86Sr (0.70512) ratios of the Ridge crest basalts suggest derivation from an old Nd/Sm and Rb/Sr enriched mantle source. This isotopic signature is similar to that of alkaline basalts on Tristan da Cunha but offset by somewhat lower 143Nd/144Nd values. The isotopic ratio trends may be extrapolated beyond the Ridge flank basalts (which have 143Nd/144Nd of 0.51270 and 87Sr/86Sr of 0.70417) in the direction of typical MORB compositions. These isotopic correlations are equally consistent with mixing of depleted and enriched end-member melts or partial melting of an inhomogeneous, variably enriched mantle source. However, observed Zr-Ba-Nb-Y interelement relationships are inconsistent with any simple two-component model of magma mixing or partial melting. They also preclude extensive involvement of depleted (N-type) MORB material or its mantle sources in the petrogenesis of Walvis Ridge basalts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Legs 59 and 60 of the International Phase of Oceanic Drilling (IPOD) were designed to study the nature and history of volcanism of the active Mariana arc, its currently spreading inter-arc basin (the Mariana Trough), and the series of inactive basins and intervening ridges that lie to the west. The older basins and ridges were drilled during Leg 59 as the first part of a transect of single-bit holes drilled in each major basin and ridge. The eastern part of the transect - the technically active region - was drilled during Leg 60. The evolution of island-arc volcanos and magma genesis associated with lithospheric subduction remain some of the most complex petrologic problems confronting us. Many types of source material (mantle, oceanic crust, continental crust) and an unusually wide range of possible physical conditions at the time of magma genesis must be identified even before the roles of partial melting and subsequent magma fractionation, mixing, and contamination can be assessed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New radiogenic isotope and trace element data are presented for the volcanic sequences along 600 km of the active Izu-Bonin arc, the Oligocene Izu arc, and their associated rift basins. As with many intra-oceanic island arcs, the Pliocene-Recent Izu-Bonin frontal-arc lavas are highly depleted in Zr, Nb and the rare-earth elements relative to typical mid-ocean ridge basalt (MORB), indicating that the mantle wedge source has undergone a previous episode of melting. Ratios between these elements (such as Nb/Zr and La/Sm), as well as 143Nd/144Nd, do not vary significantly along the length of the frontal-arc. These parameters suggest that each of the arc volcanoes is derived from similar melt fractions of the mantle wedge. However, Ba/Zr, Ba/Rb and 87Sr/86Sr increase along the frontal-arc to the north. This leads us to propose that a variable enrichment in Ba and radiogenic Sr is superimposed on the mantle wedge. Sr-Nd and Pb-Nd isotope variation indicate that both Sr and Pb become more radiogenic after fluid addition. However, Pb isotope ratios do not correlate with increases in Pb concentration or ratios such as Ba/Zr and Nb/Pb. In other words, the Pb isotopic composition of the arc lavas appears to be independent of the amount of Pb introduced by subduction fluids into the mantle source. This buffering of Pb isotopes along the frontal-arc means that the isotopic composition of the lavas is indistinguishable from that of the fluid. Isotopic mixing models presented for the arc are only illustrative of the many plausible combinations of components and quantities. Despite this, we are able to determine that the mantle wedge has isotopic characteristics similar to Indian Ocean MORB, and that the subduction-fluid solute is primarily derived from subducted oceanic basalt with a <2% contribution from subducted sediment. Lavas in the Oligocene Izu arc and fore-arc basin were derived from a mantle wedge of similar composition to the active arc. Despite levels of Pb enrichment comparable to those of the modern arc, the Pb isotopes of the Oligocene volcanics indicate a lower sediment input into the melting region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During Ocean Drilling Program Leg 210, a greatly expanded sedimentary sequence of continuous Cretaceous black shales was recovered at Site 1276. This section corresponds to the Hatteras Formation, which has been documented widely in the North Atlantic Ocean. The cored sequence extends from the lowermost Albian, or possibly uppermost Aptian, to the Cenomanian/Turonian boundary and is characterized by numerous gravity-flow deposits and sporadic, finely laminated black shales. The sequence also includes several sedimentary intervals with high total organic carbon (TOC) contents, in several instances of probable marine origin that may record oceanic anoxic events (OAE). These layers might correspond to the Cenomanian-Turonian OAE 2; the mid-Cenomanian event; and OAE 1b, 1c, and 1d in the Albian. In addition, another interval with geochemical characteristics similar to OAE-type layers was recognized in the Albian, although it does not correspond to any of the known OAEs. This study investigates the origin of the organic matter contained within these black shale intervals using TOC and CaCO3 contents, Corg/Ntot ratios, organic carbon and nitrogen isotopes, trace metal composition, and rock-eval analyses. Most of these black shale intervals, especially OAE 2 and 1b, are characterized by low 15N values (<0) commonly observed in mid-Cretaceous black shales, which seem to reflect the presence of an altered nitrogen cycle with rates of nitrogen fixation significantly higher than in the modern ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of Leg 82 of the Glomar Challenger was to document mantle heterogeneity in the vicinity of, and away from, a so-called hot spot: the Azores Triple Junction. One of the geochemical tools that permits, at least in part, the recognition of mantle heterogeneities uses hygromagmaphile elements, those elements that have an affinity for the liquid. This tool is presented in terms of an extended Coryell-Masuda plot, which incorporates within the rare earth elements the hygromagmaphile transition elements Th, Ta, Zr, Hf, Ti, Y, and V. The extended Coryell-Masuda plot is used to summarize our knowledge of mantle heterogeneity along the ridge axis at zero-age. It is also used by choosing those hygromagmaphile elements that can be analyzed on board by X-ray fluorescence spectrometry to give preliminary information on the enriched or depleted character of recovered samples. Shore-based results, which include analyses of most of the hygromagmaphile elements measured either by X-ray spectrometry or neutron activation analysis, confirm the shipboard data. From the point of view of comparative geochemistry, the variety of basalts recovered during Leg 82 provides a good opportunity to test and verify the classification of the hygromagmaphile elements. Analyses from Leg 82 provide new data about the relationship between extended rare earth patterns (enriched or depleted) that can be estimated either by La/Sm ratio or Nb/Zr (or Ta/Hf) ratios: samples from Hole 556 are depleted (low Nb/Zr ratio) but have a high 206Pb/ 204Pb (19.5) ratio; in Hole 558 a moderately enriched basalt unit with a La/Sm (= Nb/Zr) ratio (chondrite normalized) of 2 has a high 206Pb/204Pb (20) ratio. One of the most interesting results of Leg 82 lies in the crossing patterns of extended Coryell-Masuda plots for basalts from the same hole. This result enhances the notion of local mantle heterogeneity versus regional mantle heterogeneity and is confirmed by isotope data; it also favors a model of short-lived, discrete magma chambers. The data tend to confirm the Hayes Fracture Zone as a southern limit for the influence of Azores-type mantle. Nevertheless, north of the Hayes Fracture Zone, the influence of a plumelike mantle source is not simple and probably requires an explanation more complex than a contribution from a single fixed hot spot.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During Legs 118 and 176, Ocean Drilling Program Hole 735B, located on Atlantis Bank on the Southwest Indian Ridge, was drilled to a total depth of 1508 meters below seafloor (mbsf) with nearly 87% recovery. The recovered core provides a unique section of oceanic Layer 3 produced at an ultraslow spreading ridge. Metamorphism and alteration are extensive in the section but decrease markedly downward. Both magmatic and hydrothermal veins are present in the core, and these were active conduits for melt and fluid in the crust. We have identified seven major types of veins in the core: felsic and plagioclase rich, plagioclase + amphibole, amphibole, diopside and diopside + plagioclase, smectite ± prehnite ± carbonate, zeolite ± prehnite ± carbonate, and carbonate. A few epidote and chlorite veins are also present but are volumetrically insignificant. Amphibole veins are most abundant in the upper 50 m of the core and disappear entirely below 520 mbsf. Felsic and plagioclase ± amphibole ± diopside veins dominate between ~50 and 800 mbsf, and low-temperature smectite, zeolite, and prehnite veins are present in the lower 500 m of the core. Carbonate veinlets are randomly present throughout the core but are most abundant in the lower portions. The amphibole veins are closely associated with zones of intense crystal plastic deformation formed at the brittle/ductile boundary at temperatures above 700°C. The felsic and plagioclase-rich veins were formed originally by late magmatic fluids at temperatures above 800°C, but nearly all of these have been overprinted by intense hydrothermal alteration at temperatures between 300° and 600°C. The zeolite, prehnite, and smectite veins formed at temperatures <100°C. The chemistry of the felsic veins closely reflects their dominant minerals, chiefly plagioclase and amphibole. The plagioclase is highly zoned with cores of calcic andesine and rims of sodic oligoclase or albite. In the felsic veins the amphibole ranges from magnesio-hornblende to actinolite or ferro-actinolite, whereas in the monomineralic amphibole veins it is largely edenite and magnesio-hornblende. Diopside has a very narrow range of composition but does exhibit some zoning in Fe and Mg. The felsic and plagioclase-rich veins were originally intruded during brittle fracture at the ridge crest. The monomineralic amphibole veins also formed near the ridge axis during detachment faulting at a time of low magmatic activity. The overprinting of the igneous veins and the formation of the hydrothermal veins occurred as the crustal section migrated across the floor of the rift valley over a period of ~500,000 yr. The late-stage, low-temperature veins were deposited as the section migrated out of the rift valley and into the transverse ridge along the margin of the fracture zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manganese nodules recovered in the Pacific Ocean by the U. S. Bureau of Mines and by DeepSea Ventures Ltd. are studied for their chemical composition using X microprobe and X-ray fluorescence methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Processes of authigenic manganese ore formation in sediments of the North Equatorial Pacific are considered on the basis of a study of the surface layer (<2 mm) of a ferromanganese nodule and four micronodule size fractions from associated surface sediment (0-7 cm). Inhomogeneity of nodule composition is shown. Mn/Fe ratio is maximal in samples from lateral sectors of the nodule at the water-sediment interface. Compositional differences of nodules are related to preferential accumulation of trace elements in iron oxyhydroxides (P, Sr, Pb, U, Bi, Th, Y, and REE), manganese hydroxides (Co, Ni, Cu, Zn, Cd, Mo, Tl, W), and lithogenic component trapped during nodule growth (Ga, Rb, Ba, and Cs). Ce accumulation in the REE composition is maximal in the upper and lower parts of the nodule characterized by minimal Mn/Fe values. A compositional comparison of manganese micronodules and surface layers of the nodule demonstrates that micronodule material was subjected to more intense reworking during diagenesis of sediments. The micronodules are characterized by higher Mn/Fe and P/Fe, but lower Ni/Cu and Co/Ni ratios. The micronodules and nodules do not differ in terms of contents of Ce and Th that are the least mobile elements during diagenesis. Differences in chemical composition of the micronodules and nodules are related not only to additional input of Mn in the process of diagenesis, but also to transformation of iron oxyhydroxides after removal of Mn from the close association with Fe formed in suspended matter during sedimentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the African Humid Period (AHP), much of the modern hyperarid Saharan desert was vegetated and covered with numerous lakes. In marine sediments off northwestern Africa, the AHP is represented by markedly reduced siliciclastic sediment flux between ~ 12.3 and 5.5 ka. Changes in the origin of this terrigenous sediment fraction can be constrained by sediment chemistry and radiogenic isotope tracers. At Ocean Drilling Program (ODP) Site 658, Hole C (20°44.95'N, 18°34.85'W, 2263 mbsl), the neodymium (Nd) isotope composition of terrigenous detritus shows little variability throughout the last 25 kyr, indicating that the contributing geological terranes have not changed appreciably since the last glacial period. In contrast, there were large and abrupt changes in strontium (Sr) isotope ratios and chemical compositions associated with the AHP, during which 87Sr/86Sr ratios were markedly less radiogenic, and sediments show higher chemical indices of alteration. We show that sediment geochemical changes during the AHP cannot be attributed to changes in the source terranes, physical sorting, or intensity of chemical weathering. The low 87Sr/86Sr and high Sr concentrations of AHP-age samples also conflict with the interpretation of increased fine-grained, fluvially derived sediments. We propose that the most significant compositional changes at ODP 658C are due to the addition of an aluminosilicate component that has a highly altered major element signature but is enriched in soluble elements like Sr and magnesium (Mg) compared to aluminum (Al) and has low 87Sr/86Sr relative to local terrigenous source areas. We interpret these characteristics to reflect authigenic sediment supply from extensive North African paleolake basins that were prevalent during the AHP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The late Volgian (early "Boreal" Berriasian) sapropels of the Hekkingen Formation of the central Barents Sea show total organic carbon (TOC) contents from 3 to 36 wt%. The relationship between TOC content and sedimentation rate (SR), and the high Mo/Al ratios indicate deposition under oxygen-free bottom-water conditions, and suggest that preservation under anoxic conditions has largely contributed to the high accumulation of organic carbon. Hydrogen index values obtained from Rock-Eval pyrolysis are exceptionally high, and the organic matter is characterized by well-preserved type II kerogen. However, the occurrence of spores, freshwater algae, coal fragments, and charred land-plant remains strongly suggests proximity to land. Short-term oscillations, probably reflecting Milankovitch-type cyclicity, are superimposed on the long-term trend of constantly changing depositional conditions during most of the late Volgian. Progressively smaller amounts of terrestrial organic matter and larger amounts of marine organic matter upwards in the core section may have been caused by a continuous sea-level rise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Snow samples collected from hand-dug pits at two sites in Simcoe County, Ontario, Canada were analysed for major and trace elements using the clean lab methods established for polar ice. Potentially toxic, chalcophile elements are highly enriched in snow, relative to their natural abundance in crustal rocks, with enrichment factor (EF) values (calculated using Sc) in the range 107 to 1081 for Ag, As, Bi, Cd, Cu, Mo, Pb, Sb, Te, and Zn. Relative to M/Sc ratios in snow, water samples collected at two artesian flows in this area are significantly depleted in Ag, Al, Be, Bi, Cd, Cr, Cu, Ni, Pb, Sb, Tl, V, and Zn at both sites, and in Co, Th and Tl at one of the sites. The removal from the waters of these elements is presumably due to such processes as physical retention (filtration) of metal-bearing atmospheric aerosols by organic and mineral soil components as well as adsorption and surface complexation of ionic species onto organic, metal oxyhydroxide and clay mineral surfaces. In the case of Pb, the removal processes are so effective that apparently ''natural'' ratios of Pb to Sc are found in the groundwaters. Tritium measurements show that the groundwater at one of the sites is modern (ie not more than 30 years old) meaning that the inputs of Pb and other trace elements to the groundwaters may originally have been much higher than they are today; the M/Sc ratios measured in the groundwaters today, therefore, represent a conservative estimate of the extent of metal removal along the flow path. Lithogenic elements significantly enriched in the groundwaters at both sites include Ba, Ca, Li, Mg, Mn, Na, Rb, S, Si, Sr, and Ti. The abundance of these elements can largely be explained in terms of weathering of the dominant silicate (plagioclase, potassium feldspar, amphibole and biotite) and carbonate minerals (calcite, dolomite and ankerite) in the soils and sediments of the watershed. Arsenic, Mo, Te, and especially U are also highly enriched in the groundwaters, due to chemical weathering: these could easily be explained if there are small amounts of sulfides (As, Mo, Te) and apatite (U) in the soils of the source area. Elements neither significantly enriched nor depleted at both sites include Fe, Ga, Ge, and P.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Petrographic and geochemical analyses of basaltic rocks dredged from the first segment of the Southwest Indian Ridge near the Rodriguez Triple Junction have been completed in order to investigate water-rock interaction processes during mid-ocean ridge (MOR) hydrothermal alteration in the Indian Ocean. In the study area, we have successfully recovered a serial section of upper oceanic crust exposed along a steep rift valley wall which was uplifted and emplaced along a low angle normal fault. On the basis of microscopic observation, dredged samples are classified into three types: fresh lavas, low-temperature altered rocks, and high-temperature altered rocks. The fresh lavas have essentially the same chemical composition as typical N-MORB, although LILE and Nb are slightly enriched and depleted, respectively. Low temperature alteration brought about the enrichment of K2O, Rb, and U due to the presence of K-rich celadonite and U-adsorption onto Fe-oxyhydroxide and clay minerals. On the other hand, chloritization, albitization, and addition of base metals by high temperature hydrothermal alteration result in enrichments of MnO, MgO, Na2O, Cu, and Zn and depletions of CaO, K2O, Cr, Co, Ni, Rb, Sr, and Ba. In addition, U-enrichment is also observable in the high temperature altered rocks probably due to the decrease of uranite solubility in the reducing high-temperature hydrothermal solution. These petrological and geochemical features are comparable to those of the volcanic zone to transition zone rocks in the DSDP/ODP Hole 504B, indicating that our samples were recovered from the upper ~1000 m section of the oceanic crust. Only the alteration minerals related to off-axis alteration are absent in our samples dredged from near the spreading axis. The similarity of alteration between our samples from the Indian Ocean and the Hole 504B rocks from the Pacific Ocean suggests that MOR hydrothermal systems are probably similar across all world oceans.