591 resultados para Active layer depth
Resumo:
In October and November 2002, high and relatively high values of chlorophyll a concentration at the sea surface (Cchl) were observed in the English Channel (0.47 mg/m**3), in waters of the North Atlantic Current (0.25 mg/m**3 ), in the tropical and subtropical anticyclonic gyres (0.07-0.42 mg/m**3), and also in the southwestern region of the southern subtropical anticyclonic gyre (usually 0.11-0.23 mg/m**3). The central regions of the southern subtropical anticyclonic gyre (SATG) and the North Atlantic tropical gyre (NATR) were characterized by lower values of Cchl (0.02-0.08 mg/m**3 for the SATG and 0.07-0.14 mg/m**3 for the NATR). At most of the SATG stations, values of surface primary production (Cphs) varied from 2.5 to 5.5 mg C/m**3 per day and were mainly defined by fluctuations of Cchl (r = +0.78) rather than by those of the assimilation number (r = +0.54). Low assimilation activity of phytoplankton in these waters (1.3-4.6 mg chl a per hour) pointed to a lack of nutrients. Analysis of variability of their concentration and composition of photosynthetic pigments showed that, in waters north of 30°N, the growth of phytoplankton was mostly restricted by deficiency of nitrogen, while, in more southern areas, at the majority of stations (about 60%), phosphorus concentrations were minimal. At low concentrations of nitrates and nitrites, ammonium represented itself as a buffer that prevented planktonic algae from extreme degrees of nitric starvation. In tropical waters and in waters of the SATG, primary production throughout the water column varied from 240 to 380 mg C/m**2 30° per day. This level of productivity at stations with low values of C chl (<0.08 mg/m**3) was provided by a well-developed deep chlorophyll maximum and high transparency of water. Light curves of photosynthesis based on in situ measurements point to high efficiency of utilizing penetrating solar radiation by phytoplankton on cloudy days.
Resumo:
A joint mesocosm experiment took place in February/March 2013 in the bay of Villefranche in France as part of the european MedSeA project. Nine mesocosms (52 m**3) were deployed over a 2 weeks period and 6 different levels of pCO2 and 3 control mesocosms (about 450 µatm), were used, in order to cover the range of pCO2 anticipated for the end of the present century. During this experiment, the potential effects of these perturbations on chemistry, planktonic community composition and dynamics including: eucaryotic and prokaryotic species composition, primary production, nutrient and carbon utilization, calcification, diazotrophic nitrogen fixation, organic matter exudation and composition, micro-layer composition and biogas production were studied by a group of about 25 scientists from 8 institutes and 6 countries. This is one of the first mesocosm experiments conducted in oligotrophic waters. A blog dedicated to this experiment can be viewed at: http://medseavillefranche2013.obs-vlfr.fr.
Resumo:
A joint mesocosm experiment took place in June/July 2012 in Corsica (bay of Calvi, Stareso station;http://www.stareso.com/) as part of the european MedSeA project. Nine mesocosms (52 m**3) were deployed over a 20 days period and 6 different levels of pCO2 and 3 control mesocosms (about 450 µatm), were used, in order to cover the range of pCO2 anticipated for the end of the present century. During this experiment, the potential effects of these perturbations on chemistry, planktonic community composition and dynamics including: eucaryotic and prokaryotic species composition, primary production, nutrient and carbon utilization, calcification, diazotrophic nitrogen fixation, organic matter exudation and composition, micro-layer composition and biogas production were studied by a group of about 25 scientists from 8 institutes and 6 countries. This is one of the first mesocosm experiments conducted in oligotrophic waters. A blog dedicated to this experiment can be viewed at: http://medseastareso2012.wordpress.com/.
Resumo:
The major aim of this study was to examine the influence of an embedded viscoelastic-plastic layer at different viscosity values on accretionary wedges at subduction zones. To quantify the effects of the layer viscosity, we analysed the wedge geometry, accretion mode, thrust systems and mass transport pattern. Therefore, we developed a numerical 2D 'sandbox' model utilising the Discrete Element Method. Starting with a simple pure Mohr Coulomb sequence, we added an embedded viscoelastic-plastic layer within the brittle, undeformed 'sediment' package. This layer followed Burger's rheology, which simulates the creep behaviour of natural rocks, such as evaporites. This layer got thrusted and folded during the subduction process. The testing of different bulk viscosity values, from 1 × 10**13 to 1 × 10**14 (Pa s), revealed a certain range where an active detachment evolved within the viscoelastic-plastic layer that decoupled the over- and the underlying brittle strata. This mid-level detachment caused the evolution of a frontally accreted wedge above it and a long underthrusted and subsequently basally accreted sequence beneath it. Both sequences were characterised by specific mass transport patterns depending on the used viscosity value. With decreasing bulk viscosities, thrust systems above this weak mid-level detachment became increasingly symmetrical and the particle uplift was reduced, as would be expected for a salt controlled forearc in nature. Simultaneously, antiformal stacking was favoured over hinterland dipping in the lower brittle layer and overturning of the uplifted material increased. Hence, we validated that the viscosity of an embedded detachment strongly influences the whole wedge mechanics, both the respective lower slope and the upper slope duplex, shown by e.g. the mass transport pattern.
Resumo:
Studies were carried out mostly in the area of RMS Titanic wreck site (41°44'N, 49°57'W) located above the continental slope and the south of the Grand Banks of Newfoundland. In a period from 18.06 to 24.09.2001 five surveys of production characteristics of surface phytoplankton were conducted over 5-9 days. Mean values of these characteristics obtained during the surveys were 9.2-11.7 mg C/m**3 per day for primary production (C_phs), 0.102-0.188 mg/m**3 for chlorophyll a (C_chls), and 4.44-7.42 mg C/mg chl. a per hour for assimilation number (AN). The main reason for low C_phs variability was a significant inverse relationship (R=-0.66) between AN and C_chls found over the research area. When cold shelf waters dominated in the area (27.07 to 19.08.2001), C_chls values for the slope region (0.125+/-0.031 µg/l) and for the outer shelf (0.130+/-0.040 µg/l) were similar. During strengthening of influence of warmer slope waters within area (from 29.08 to 13.09.2001), C_chls concentration within surface waters of the outer shelf was 0.152+/-0.039 µg/l and exceeded one for the slope region (0.094+/-0.004 µg/l) by factor 1.6. Against the background of low Cchls values, the High values of integral primary production in the water column (510-1010 mg C/m**2 per day) at low C_chls values measured within the area were determined both by high assimilation activity of phytoplankton and by the deep (30-40 m) maximum of primary production. Main reasons for formation of such a maximum were high chlorophyll concentration within the layer of the deep chlorophyll maximum (up to 0.5-2.5 µg/l) and in the relatively high solar irradiance within this layer varying from 1.4 to 8.6% of subsurface PAR.