696 resultados para (Pale) dolomitic carbonate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High resolution studies from the Propeller Mound, a cold-water coral carbonate mound in the NE Atlantic, show that this mound consists of >50% carbonate justifying the name "carbonate mound". Through the last ~300,000 years approximately one third of the carbonate has been contributed by cold-water corals, namely Lophelia pertusa and Madrepora oculata. This coral bound contribution to the carbonate budget of Propeller Mound is probably accompanied by an unknown portion of sediments buffered from suspension by the corals. However, extended hiatuses in Propeller Mound sequences only allow the calculation of a net carbonate accumulation. Thus, net carbonate accumulation for the last 175 kyr accounts for only <0.3 g/cm2/kyr, which is even less than for the off-mound sediments. These data imply that Propeller Mound faces burial by hemipelagic sediments as has happened to numerous buried carbonate mounds found slightly to the north of the investigated area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early diagenesis in Leg 126 forearc and backarc sands/sandstones is characterized by the dissolution of intermediate to mafic brown glass, the alteration of colorless rhyolitic glass to clay minerals, precipitation of thin clay-mineral rim cements, and minor precipitation of clinoptilolite cements. Later, more intense diagenesis is restricted to Oligocene forearc basin sediments at Sites 787,792, and 793. In these sections, the effects of early diagenesis have been intensified and overprinted by later diagenetic effects including (1) large-scale dissolution of feldspar and pyroxene crystals, (2) further dissolution of vitric components, (3) precipitation of minor carbonate cements, and (4) pervasive, multiple-staged zeolite cementation. Zeolite minerals present include analcite, mordenite, natrolite, heulandite, wairakite, chabazite, erionite, herschelite, and phillipsite. The latest diagenetic events appear to be the minor dissolution of zeolite cements and the precipitation of minor carbonate and potassium feldspar(?) cements. Observed porosity types include primary interparticles; primary intraparticles in vesicular glass and foraminifers; primary interparticles reduced by compaction and cementation; secondary intraparticles produced by dissolution of feldspar, nonopaque heavy minerals, volcanic glass, and foraminifer tests; and secondary interparticles produced by the dissolution of zeolite cements. Within forearc Oligocene sections at Sites 787 and 792, diagenetic effects appear to decrease with depth in the Oligocene section; however, at Site 793 the majority of samples are intensely altered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine organisms are exposed to increasingly acidic oceans, as a result of equilibration of surface ocean water with rising atmospheric CO2 concentrations. In this study, we examined the physiological response of Mytilus edulis from the Baltic Sea, grown for 2 months at 4 seawater pCO2 levels (39, 113, 243 and 405 Pa/385, 1,120, 2,400 and 4,000 µatm). Shell and somatic growth, calcification, oxygen consumption and excretion rates were measured in order to test the hypothesis whether exposure to elevated seawater pCO2 is causally related to metabolic depression. During the experimental period, mussel shell mass and shell-free dry mass (SFDM) increased at least by a factor of two and three, respectively. However, shell length and shell mass growth decreased linearly with increasing pCO2 by 6-20 and 10-34%, while SFDM growth was not significantly affected by hypercapnia. We observed a parabolic change in routine metabolic rates with increasing pCO2 and the highest rates (+60%) at 243 Pa. excretion rose linearly with increasing pCO2. Decreased O:N ratios at the highest seawater pCO2 indicate enhanced protein metabolism which may contribute to intracellular pH regulation. We suggest that reduced shell growth under severe acidification is not caused by (global) metabolic depression but is potentially due to synergistic effects of increased cellular energy demand and nitrogen loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examines sublethal effects of near-future (year 2100) ocean acidification (OA) on regenerative capacity, biochemical composition, and behavior of the sea star Luidia clathrata, a predominant predator in sub-tropical soft-bottom habitats. Two groups of sea stars, each with two arms excised, were maintained on a formulated diet in seawater bubbled with air alone (pH 8.2, approximating a pCO2 of 380 µatm) or with a controlled mixture of air/C02 (pH 7.8, approximating a pCO2 of 780 µatm). Arm length, total body wet weight, and righting responses were measured weekly. After 97 days, a period of time sufficient for 80% arm regeneration, pyloric caecal indices, and protein, carbohydrate, lipid, and ash levels were determined for body wall and pyloric caecal tissues of intact and regenerating arms of individuals held in both seawater pH treatments. The present study indicates that predicted near-term levels of ocean acidification (seawater pH 7.8) do not significantly impact whole animal growth, arm regeneration rates, biochemical composition, or righting behavior in this common soft bottom sea star.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CaCO3, Corg, and biogenic SiO2 were measured in Eocene equatorial Pacific sediments from Sites 1218 and 1219, and bulk oxygen and carbon isotopes were measured on selected intervals from Site 1219. These data delineate a series of CaCO3 events that first appeared at ~48 Ma and continued to the Eocene/Oligocene boundary. Each event lasted 1-2 m.y. and is separated from the next by a low CaCO3 interval of a similar time span. The largest of these carbonate accumulation events (CAE-3) is in Magnetochron 18. It began at ~42.2 Ma, lasted until ~40.3 Ma, and was marked by higher than average productivity. The end of CAE-3 was abrupt and was associated with a large-scale carbon transfer to the oceans prior to warming of high-latitude regions. Changes in carbonate compensation depth associated with CAE excursions were small in the early part of the middle Eocene but increased to as much as 800 m by the late middle Eocene before decreasing into the late Eocene. Oxygen isotope data indicate that the carbonate events are associated with cooling conditions and may mark small glaciations in the Eocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen and carbon isotopic variability of the dominant (<38 µm) carbonate fraction within bedded, organic-carbon rich Lower Cretaceous sediment intervals from various DSDP sites are closely correlated with preservational changes in the carbonates. Isotopic fluctuations are absent where carbonate contents vary little and where the carbonate fraction is dominated by biogenic phytoplankton remains. Within each of the studied intervals oxygen and carbon isotopic ratios become increasingly more negative in samples with carbonate contents higher than about 60% in which the proportion of diagenetic microcarbonate increases rapidly. Carbon isotopic ratios show a trend towards positive values in samples with carbonate contents of less than 40% and strong signs of dissolution. The taxonomic composition of nannofossil assemblages varies little within single intervals, despite significant differential diagenesis among individual beds; this points towards ecological stability of oceanic surface waters during the deposition of alternating beds. Bedding is, however, closely related to changing bioturbation intensity, indicating repeated fluctuations of the deep-water renewal rates and oxygen supply. Various microbial decomposition processes of organic matter leading to bed-specific differential carbonate diagenesis resulted in an amplification of primary bedding features and are considered responsible for most of the observed fluctuations in the stable isotopic ratios and carbonate contents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic processes have the potential to modulate the effects of ocean acidification (OA) in nearshore macroalgal beds. We investigated whether natural mixed assemblages of the articulate coralline macroalgae Arthrocardia corymbosa and understory crustose coralline algae (CCA) altered pH and O2 concentrations within and immediately above their canopies. In a unidirectional flume, we tested the effect of water velocity (0-0.1 m/s), bulk seawater pH (ambient pH 8.05, and pH 7.65), and irradiance (photosynthetically saturating light and darkness) on pH and O2 concentration gradients, and the derived concentration boundary layer (CBL) thickness. At bulk seawater pH 7.65 and slow velocities (0 and 0.015 m/s), pH at the CCA surface increased to 7.90-8.00 in the light. Although these manipulations were short term, this indicates a potential daytime buffering capacity that could alleviate the effects of OA. Photosynthetic activity also increased O2 concentrations at the surface of the CCA. However, this moderating capacity was flow dependent; the CBL thickness decreased from an average of 26.8 mm from the CCA surface at 0.015 m/s to 4.1 mm at 0.04 m/s. The reverse trends occurred in the dark, with respiration causing pH and O2 concentrations to decrease at the CCA surface. At all flow velocities the CBL thicknesses (up to 68 mm) were much greater than those previously published, indicating that the presence of canopies can alter the CBL substantially. In situ, the height of macroalgal canopies can be an order of magnitude larger than those used here, indicating that the degree of buffering to OA will be context dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean surface CO2 levels are increasing in line with rising atmospheric CO2 and could exceed 900 µatm by year 2100, with extremes above 2000 µatm in some coastal habitats. The imminent increase in ocean pCO2 is predicted to have negative consequences for marine fishes, including reduced aerobic performance, but variability among species could be expected. Understanding interspecific responses to ocean acidification is important for predicting the consequences of ocean acidification on communities and ecosystems. In the present study, the effects of exposure to near-future seawater CO2 (860 µatm) on resting (M O2rest) and maximum (M O2max) oxygen consumption rates were determined for three tropical coral reef fish species interlinked through predator-prey relationships: juvenile Pomacentrus moluccensis and Pomacentrus amboinensis, and one of their predators: adult Pseudochromis fuscus. Contrary to predictions, one of the prey species, P. amboinensis, displayed a 28-39% increase in M O2max after both an acute and four-day exposure to near-future CO2 seawater, while maintaining M O2rest. By contrast, the same treatment had no significant effects on M O2rest or M O2max of the other two species. However, acute exposure of P. amboinensis to 1400 and 2400 µatm CO2 resulted in M O2max returning to control values. Overall, the findings suggest that: (1) the metabolic costs of living in a near-future CO2 seawater environment were insignificant for the species examined at rest; (2) the M O2max response of tropical reef species to near-future CO2 seawater can be dependent on the severity of external hypercapnia; and (3) near-future ocean pCO2 may not be detrimental to aerobic scope of all fish species and it may even augment aerobic scope of some species. The present results also highlight that close phylogenetic relatedness and living in the same environment, does not necessarily imply similar physiological responses to near-future CO2.