255 resultados para physical composition
Resumo:
Isotopic ratios of Sr and Nd from lithogenic components of three isochronous core sections recovered from an east-west transect in the Eastern Mediterranean Sea (EMS) have been analyzed. The data are used for a quantitative estimate of the temporal and spatial variation of detrital flux to the EMS, assuming Saharan dust and Aegean/Nile particulate matter as dominant end members. It was established that the carbonate-free Saharan dust flux during deposition of the nonsapropel layers of marine oxygen isotope stage 5.4 (MIS 5.4) was similar to the present flux. During the deposition of sapropels S5 and S6, however, the Saharan dust input was drastically reduced and was not balanced by a change in the riverine influx at this time. Denser vegetation cover during more humid conditions may have reduced physical erosion and sediment removal in the source area. During marine oxygen isotope stage 6.2 (MIS 6.2) a pronounced increase of Saharan dust and detrital influx from the Aegean region is evident and implies more arid conditions in the southern and northern catchment areas. During this period, intersite variations are interpreted in terms of their geographic location relative to the seaways connecting the Aegean Sea and EMS. The width of the straits and hence the amount of sediment entering the eastern basins may have been affected by a low sea level that impeded interbasin sediment dispersal.
Resumo:
Compressional wave velocities and densities were measured for 6 basalt samples from ODP Hole 801B and 16 samples from ODP Hole 801C, a site that represents the first drilling of Jurassic-age crustal rocks in the Pacific basin. Incremental measurements, taken to a total pressure of 200 MPa, show a systematic decrease in velocity with increasing porosity and a related increase with increasing wet-bulk density. A comparison of the plot of porosity vs. compressional wave velocity with the theoretical equation from Wyllie et al. (1958) suggests this equation is inappropriate for oceanic basalts because of mineral alteration in high porosity samples. Also of interest is the dramatic change in velocity across a hydrothermal boundary. Basalts below this hydrothermal layer have a mean velocity of 6.05 km/s at 60 MPa while those above show a mean velocity of 4.55 km/s at 60 MPa. The low velocity values of the basalts above the hydrothermal deposit may be attributed to the higher porosity and composition observed in these rocks; the higher porosity is possibly the result of increased exposure to circulating seawater.
Resumo:
Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, C/N ratio) and C accumulation rates among vegetation types and environmental classes.
Resumo:
This study examines the forcing mechanisms driving long-term carbonate accumulation and preservation in lacustrine sediments in Lake Iznik (northwestern Turkey) since the last glacial. Currently, carbonates precipitate during summer from the alkaline water column, and the sediments preserve aragonite and calcite. Based on X-ray diffraction data, carbonate accumulation has changed significantly and striking reversals in the abundance of the two carbonate polymorphs have occurred on a decadal time scale, during the last 31 ka cal BP. Different lines of evidence, such as grain size, organic matter and redox sensitive elements, indicate that reversals in carbonate polymorph abundance arise due to physical changes in the lacustrine setting, for example, water column depth and lake mixing. The aragonite concentrations are remarkably sensitive to climate, and exhibit millennial-scale oscillations. Extending observations from modern lakes, the Iznik record shows that the aerobic decomposition of organic matter and sulphate reduction are also substantial factors in carbonate preservation over long time periods. Lower lake levels favour aragonite precipitation from supersaturated waters. Prolonged periods of stratification and consequently enhanced sulphate reduction favour aragonite preservation. In contrast, prolonged or repeated exposure of the sediment-water interface to oxygen results in in situ aerobic organic matter decomposition, eventually leading to carbonate dissolution. Notably, the Iznik sediment profile raises the hypothesis that different states of lacustrine mixing lead to selective preservation of different carbonate polymorphs. Thus, a change in the entire lake water chemistry is not strictly necessary to favour the preservation of one polymorph over another.
Chemical composition of bottom sediments from the Kara Sea and estuaries of the Ob and Enisey Rivers
Resumo:
Data obtained during Cruse 49 of R/V Dmitry Mendeleev and of post-cruise studies.
Resumo:
We studied the grain-size, mineral and chemical compositions, physical properties, radiocarbon age, spore-pollen spectra, and diatom composition in sediments from Core PSh24-2537 sampled in the West Gotland Basin. Four lithological-stratigraphic units were distinguished: varved clays of the Baltic Ice Lake, black and black-gray (sulfide) clays of the Yoldian Sea, gray clays of Ancylus Lake, and greenish-gray sapropel-like littorine and post-littorine silts of the marine stage of Holocene. These units differ from each other both in their matter composition and in plant remains. In the littorine silts organic carbon concentra¬tion reached from 1.5 to 10.35%. Conditions of sediment accumulation and the stages of evolution of the West Gotland Basin over the post-glacial time are characterized.
Resumo:
Lithofacial types of sediments formed in certain geographic and physical-chemical conditions of the Pacific Ocean are distinguished and characterized. It is shown that the regular change of bottom sediment types forming a genetic series from the coast to the pelagic zone clearly demonstrates a leading role of biogenic-terrigenous sedimentation in their formation. In the pelagic zone of the ocean erosion of islands and seamounts, basalt volcanism of anticlinal uplifts, as well as exhalative contribution play some role in addition to the main source of terrigenous and pyroclastic material from continents. These sources do not change, but only complicate terrigenous sedimentation in the studied area of the ocean.
Resumo:
Cretaceous chert and porcellanite recovered at Site 436, east of northern Honshu, Japan, are texturally and mineralogically similar to siliceous rocks of comparable age at Sites 303, 304, and 307 in the northwest Pacific. These rocks probably were formed by impregnation of the associated pelagic clay with locally derived silica from biogenic and perhaps some volcanic debris. Fine horizontal laminations are the only primary sedimentary structures, suggesting minimal reworking and transport. Collapse breccias and incipient chert nodules are diagenetic features related to silicification and compaction of the original sediment. Disordered opal-CT (d[101] = 4.09 Å) and microgranular quartz (crystallinity index < 1.0) are the two common silica minerals present. Some samples show quartz replacing this poorly ordered opal- CT, supporting the notion that opal-CT does not become completely ordered (i.e., d[101] = 4.04 Å) in some cases before being converted to quartz. The present temperature calculated for the depth of the shallowest chert and porcellanite at this site is 30 °C; this may represent the temperature of conversion of opal-CT to quartz. High reflection coefficients (0.29-0.65) calculated for the boundary between chert-porcellanite and clay-claystone support the common observation that chert is a strong seismic reflector in deep-sea sedimentary sections.
Resumo:
Nodule samples obtained were described and studied on board for 1) observation of occurrence and morphology in and outside samplers, size classification, measurement of weight and calculation of population density (kg/m2); 2) photographing whole nodules on the plate marked with the frames of unit areas of both 0cean-70 (0.50 m2) and freefall grab (0.13 m2), and that of typical samples on the plate with a 5 cm grid scale: 3) observation of internal structures of the nodules on cut section; and 4) determination of mineral composition by X-ray diffractometer. The relation between nodule types and geological environment or chemical composition was examined by referring to other data of related studies, such as sedimentology. acoustic survey, and chemical analysis.
Resumo:
Sediment samples from approximately 40 stations in the Western, middle and eastern Baltic Sea were investigated for manganese and iron content. In a series of interstitial water samples and numerous deep and surface water samples, the manganese content was likewise determined. A strong enrichment of these elements in the basin sediments was shown. In many instances, several percent manganese were present. As a maximum value, 13% was found in a 1 mm thick layer. Furthermore, a distinct decrease in manganese content with increasing sediment depth was shown in the upper 10 to 20 cm of the Sediment at almost all stations. Both phenomena may be explained by the release of manganese from the Sediment through diffusion. In the flat parts of the Baltic and those parts having good bottom water circulation, this diffusion progresses especially vigorously as a result of a steep gradient of the Mn++ concentration in the interstitial water-deep water interface. The manganese which hereby passes into the water overlying the bottom (manganese contents between 10 and 100 y Mn/l were determined in numerous deep water samples) is partly reprecipitated on the Sediment surface, and partly carried by currents into the deeper basins where it is finallv deposited. It is bound there as a manganese-rich mixed carbonate, the composition of which can be proved chemically and by x-ray methods. Iron is likewise of higher content in the basinal sediments, however, the extent of its enrichment is far less since it is less soluble than manganese under the reducing conditions in the sediments. The fine bands of manganese- and iron-rich layers in the basin sediments may likewise be explained as a result of diffusion.
Resumo:
The Todoroki Mine is situated about 25 kilometers to the south-east of Ginzan railway station in Siribesi Province, Hokkaido. The author analysed an interesting specimen of black manganese-ore which had a fractured surface which looked like that of a broken piece of wood. This new manganese mineral was studied in its form, physical properties and chemical composition. The author later named this mineral form as "todorokite".