255 resultados para oxygen ingress rate


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Core Vema 28-238 preserves an excellent oxygen isotope and magnetic stratigraphy and is shown to contain undisturbed sediments deposited continuously through the past 870,000 yr. Detailed correlation with sequences described by Emiliani in the Caribbean and Atlantic Ocean is demonstrated. The boundaries of 22 stages representing alternating times of high and low Northern Hemisphere ice volume are recognized and dated. The record is interpreted in terms of Northern Hemisphere ice accumulation, and is used to estimate the range of temperature variation in the Caribbean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metabolic rate of organisms may either be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law; or it may be considered a property of the organism that emerges as a result of the organism's adaptation to the environment, with consequently less universal mass scaling properties. Data on body mass, maximum ingestion and clearance rates, respiration rates and maximum growth rates of animals living in the ocean epipelagic were compiled from the literature, mainly from original papers but also from previous compilations by other authors. Data were read from tables or digitized from graphs. Only measurements made on individuals of know size, or groups of individuals of similar and known size were included. We show that clearance and respiration rates have life-form-dependent allometries that have similar scaling but different elevations, such that the mass-specific rates converge on a rather narrow size-independent range. In contrast, ingestion and growth rates follow a near-universal taxa-independent ~3/4 mass scaling power law. We argue that the declining mass-specific clearance rates with size within taxa is related to the inherent decrease in feeding efficiency of any particular feeding mode. The transitions between feeding mode and simultaneous transitions in clearance and respiration rates may then represent adaptations to the food environment and be the result of the optimization of tradeoffs that allow sufficient feeding and growth rates to balance mortality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tropical echinoid Echinometra viridis was reared in controlled laboratory experiments at temperatures of approximately 20°C and 30°C to mimic winter and summer temperatures and at carbon dioxide (CO2) partial pressures of approximately 487 ppm-v and 805 ppm-v to simulate current and predicted-end-of-century levels. Spine material produced during the experimental period and dissolved inorganic carbon (DIC) of the corresponding culture solutions were then analyzed for stable oxygen (delta 18Oe, delta 18ODIC) and carbon (The tropical echinoid Echinometra viridis was reared in controlled laboratory experiments at temperatures of approximately 20°C and 30°C to mimic winter and summer temperatures and at carbon dioxide (CO2) partial pressures of approximately 487 ppm-v and 805 ppm-v to simulate current and predicted-end-of-century levels. Spine material produced during the experimental period and dissolved inorganic carbon (DIC) of the corresponding culture solutions were then analyzed for stable oxygen (delta18Oe, delta18ODIC) and carbon (delta13Ce, delta13CDIC) isotopic composition. Fractionation of oxygen stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (delta18O = delta18Oe - delta18ODIC) was significantly inversely correlated with seawater temperature but not significantly correlated with atmospheric pCO2. Fractionation of carbon stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (Delta delta13C = delta13Ce - delta13CDIC) was significantly positively correlated with pCO2 and significantly inversely correlated with temperature, with pCO2 functioning as the primary factor and temperature moderating the pCO2-delta13C relationship. Echinoid calcification rate was significantly inversely correlated with both delta18O and delta13C, both within treatments (i.e., pCO2 and temperature fixed) and across treatments (i.e., with effects of pCO2 and temperature controlled for through ANOVA). Therefore, calcification rate and potentially the rate of co-occurring dissolution appear to be important drivers of the kinetic isotope effects observed in the echinoid spines. Study results suggest that echinoid delta18O monitors seawater temperature, but not atmospheric pCO2, and that echinoid delta13C monitors atmospheric pCO2, with temperature moderating this relationship. These findings, coupled with echinoids' long and generally high-quality fossil record, supports prior assertions that fossil echinoid delta18O is a viable archive of paleo-seawater temperature throughout Phanerozoic time, and that delta13C merits further investigation as a potential proxy of paleo-atmospheric pCO2. However, the apparent impact of calcification rate on echinoid delta18O and delta13C suggests that paleoceanographic reconstructions derived from these proxies in fossil echinoids could be improved by incorporating the effects of growth rate.13Ce, delta13CDIC) isotopic composition. Fractionation of oxygen stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (delta18O = delta18Oe - delta18ODIC) was significantly inversely correlated with seawater temperature but not significantly correlated with atmospheric pCO2. Fractionation of carbon stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (delta13C = delta13Ce - delta13CDIC) was significantly positively correlated with pCO2 and significantly inversely correlated with temperature, with pCO2 functioning as the primary factor and temperature moderating the pCO2-delta13C relationship. Echinoid calcification rate was significantly inversely correlated with both delta18O and delta13C, both within treatments (i.e., pCO2 and temperature fixed) and across treatments (i.e., with effects of pCO2 and temperature controlled for through ANOVA). Therefore, calcification rate and potentially the rate of co-occurring dissolution appear to be important drivers of the kinetic isotope effects observed in the echinoid spines. Study results suggest that echinoid delta18O monitors seawater temperature, but not atmospheric pCO2, and that echinoid delta13C monitors atmospheric pCO2, with temperature moderating this relationship. These findings, coupled with echinoids' long and generally high-quality fossil record, supports prior assertions that fossil echinoid delta18O is a viable archive of paleo-seawater temperature throughout Phanerozoic time, and that delta13C merits further investigation as a potential proxy of paleo-atmospheric pCO2. However, the apparent impact of calcification rate on echinoid delta18O and delta13C suggests that paleoceanographic reconstructions derived from these proxies in fossil echinoids could be improved by incorporating the effects of growth rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon isotopic measurements on the benthic foraminiferal genus Cibicidoides document that mean deep ocean delta13C values were 0.46 per mil lower during the last glacial maximum than during the Late Holocene. The geographic distribution of delta13C was altered by changes in the production rate of nutrient-depleted deep water in the North Atlantic. During the Late Holocene, North Atlantic Deep Water, with high delta13C values and low nutrient values, can be found throughout the Atlantic Ocean, and its effects can be traced into the southern ocean where it mixes with recirculated Pacific deep water. During the glaciation, decreased production of North Atlantic Deep Water allowed southern ocean deep water to penetrate farther into the North Atlantic and across low-latitude fracture zones into the eastern Atlantic. Mean southern ocean delta13C values during the glaciation are lower than both North Atlantic and Pacific delta13C values, suggesting that production of nutrient-depleted water occurred in both oceans during the glaciation. Enriched 13C values in shallow cores within the Atlantic Ocean indicate the existence of a nutrient-depleted water mass above 2000 m in this ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present records of biogenic opal percentage and burial rate in 12 piston cores from the Atlantic and Indian sectors of the Southern Ocean. These records provide a detailed, quantitative description of changing patterns of opal deposition over the last 450 kyr. The striking regional coherence of these records suggests that dissolution in the deep sea and sediment pore waters does not obscure the surface productivity signal, and therefore these opal time series can be used in combination with other surface water tracers to make inferences about the chemistry and circulation of the Southern Ocean under different global climate conditions. Three broad depositional patterns can be distinguished. Northernmost records (39°-42°S latitude) are characterized by enhanced opal burial during glacial periods and strong 41 kyr periodicity. Records from cores just north of the present Antarctic Polar Front (46°-49°S) show even larger increases in opal burial rate during glacial intervals, but have variance concentrated in the 100 and 23 kyr bands. Southernmost records (51°-55°S) are completely out of phase with those to the north, with greatly reduced opal burial rates during glacial periods. Taken as a whole, the opal records show no evidence for the increased total Antarctic productivity predicted by recent geochemical models of atmospheric CO2 variability. The areal expansion of Southern Ocean sea ice over the present zone of high siliceous productivity provides one plausible explanation for the glacial-interglacial opal patterns. The excess silica not taken up in this zone during glacial periods would contribute to greater nutrient availability and thus higher productivity in the subantarctic region. However, local circulation changes may act to modify this basic signal, possibly accounting for the observed differences in the opal variance spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isotope chronostratigraphy of Upper Quaternary sediments from the Northwest Pacific and the Bering Sea was established by oxygen isotope records in planktonic and benthic foraminifera. The main regularities of temporal variations of calcium carbonate, organic carbon and opal contents, as well as of magnetic susceptibility in sediments of the study region with regard to climatic variations and productivity were established by means of isotopic-geochemical and lithophysical analyses of bottom sediments. Correlation of volcanogenic interbeds in the sediments was carried out, and their stratigraphy and age were preliminarily ascertained. Correlation was accomplished of A.P. Jouse diatom horizons determined by an analysis of the main ecological variations in diatom assemblages in Upper Quaternary sediments of the Northwest Pacific, Bering and Okhotsk Seas, and their comparison with similar variations in sediment cores with standard oxygen isotope stages. Also variations in lithology and contents of biogenic components in sediments of the region and in the cores were taken into account. A ratio of abundance of "neritic" species to the sum of "neritic" and oceanic species abundance (coefficient Id) can be a criterion of ecological changes of diatom assemblages in the studied region. It is determined by climate variability and mostly by sea ice influence. Schemes of average sedimentation rates in the Northwest Pacific and Bering Sea for periods of the first and the second oxygen isotope stages (12.5-1 and 24-12.5 ka, respectively) were plotted on the basis of obtained results and correlation of diatom horizons and lithological units in early studied cores with the oxygen isotope stages. Closure of the Bering Strait and aeration of the north-eastern shelf of the Bering Sea during the second stage induced increase of sedimentation rates in the Bering Sea, as compared with the first stage, and suspended material transport from the Bering Sea through the Kamchatka Strait into the Northwest Pacific and its accumulation in the southeast direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Respiration and ammonium excretion rates at different oxygen partial pressure were measured for calanoid copepods and euphausiids from the Eastern Tropical South Pacific and the Eastern Tropical North Atlantic. All specimens used for experiments were caught in the upper 400 m of the water column and only animals appearing unharmed and fit were used for experiments. Specimens were sorted, identified and transferred into aquaria with filtered, well-oxygenated seawater immediately after the catch and maintained for 1 to 13 hours prior to physiological experiments at the respective experimental temperature. Maintenance and physiological experiments were conducted in darkness in temperature-controlled incubators at 11, 13 or 23 degree C (±1). Before and during experiments, animals were not fed. Respiration and ammonium excretion rate measurements (both in µmol h-1 gDW-1) at varying oxygen concentrations were conducted in 12 to 60 mL gas-tight glass bottles. These were equipped with oxygen microsensors (ø 3 mm, PreSens Precision Sensing GmbH, Regensburg, Germany) attached to the inner wall of the bottles to monitor oxygen concentrations non-invasively. Read-out of oxygen concentrations was conducted using multi-channel fiber optic oxygen transmitters (Oxy-4 and Oxy-10 mini, PreSens Precision Sensing GmbH, Regensburg, Germany) that were connected via optical fibers to the outside of the bottles directly above the oxygen microsensor spots. Measurements were started at pre-adjusted oxygen and carbon dioxide levels. For this, seawater stocks with adjusted pO2 and pCO2 were prepared by equilibrating 3 to 4 L of filtered (0.2 µm filter Whatman GFF filter) and UV - sterilized (Aqua Cristal UV C 5 Watt, JBL GmbH & Co. KG, Neuhofen, Germany) water with premixed gases (certified gas mixtures from Air Liquide) for 4 hours at the respective experimental temperature. pCO2 levels were chosen to mimic the environmental pCO2 in the ETSP OMZ or the ETNA OMZ. Experimental runs were conducted with 11 to 15 trial incubations (1 or 2 animals per incubation bottle and three different treatment levels) and three animal-free control incubations (one per experimental treatment). During each run, experimental treatments comprised 100% air saturation as well as one reduced air saturation level with and without CO2. Oxygen concentrations in the incubation bottles were recorded every 5 min using the fiber-optic microsensor system and data recording for respiration rate determination was started immediately after all animals were transferred. Respiration rates were calculated from the slope of oxygen decrease over selected time intervals. Chosen time intervals were 20 to 105 min long. No respiration rate was calculated for the first 20 to 60 min after animal transfer to avoid the impact of enhanced activity of the animal or changes in the bottle water temperature during initial handling on the respiration rates and oxygen readings. Respiration rates were obtained over a maximum of 16 hours incubation time and slopes were linear at normoxia to mild hypoxia. Respiration rates in animal-free control bottles were used to correct for microbial activity. These rates were < 2% of animal respiration rates at normoxia. Samples for the measurement of ammonium concentrations were taken after 2 to 10 hours incubation time. Ammonium concentration was determined fluorimetrically (Holmes et al., 1999). Ammonium excretion was calculated as the concentration difference between incubation and animal-free control bottles. Some specimens died during the respiration and excretion rate measurements, as indicated by a cessation of respiration. No excretion rate measurements were conducted in this case, but the oxygen level at which the animal died was noted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytoplankton are the basis of marine food webs, and affect biogeochemical cycles. As CO2 levels increase, shifts in the frequencies and physiology of ecotypes within phytoplankton groups will affect their nutritional value and biogeochemical function. However, studies so far are based on a few representative genotypes from key species. Here, we measure changes in cellular function and growth rate at atmospheric CO2 concentrations predicted for the year 2100 in 16 ecotypes of the marine picoplankton Ostreococcus. We find that variation in plastic responses among ecotypes is on par with published between-genera variation, so the responses of one or a few ecotypes cannot estimate changes to the physiology or composition of a species under CO2 enrichment. We show that ecotypes best at taking advantage of CO2 enrichment by changing their photosynthesis rates most should increase in relative fitness, and so in frequency in a high-CO2 environment. Finally, information on sampling location, and not phylogenetic relatedness, is a good predictor of ecotypes likely to increase in frequency in this system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the effect of elevated partial pressure of CO2 (pCO2) on the photosynthesis and growth of four phylotypes (ITS2 types A1, A13, A2, and B1) from the genus Symbiodinium, a diverse dinoflagellate group that is important, both free-living and in symbiosis, for the viability of cnidarians and is thus a potentially important model dinoflagellate group. The response of Symbiodinium to an elevated pCO2 was phylotype-specific. Phylotypes A1 and B1 were largely unaffected by a doubling in pCO2 in contrast, the growth rate of A13 and the photosynthetic capacity of A2 both increased by ~ 60%. In no case was there an effect of ocean acidification (OA) upon respiration (dark- or light-dependent) for any of the phylotypes examined. Our observations suggest that OA might preferentially select among free-living populations of Symbiodinium, with implications for future symbioses that rely on algal acquisition from the environment (i.e., horizontal transmission). Furthermore, the carbon environment within the host could differentially affect the physiology of different Symbiodinium phylotypes. The range of responses we observed also highlights that the choice of species is an important consideration in OA research and that further investigation across phylogenetic diversity, for both the direction of effect and the underlying mechanism(s) involved, is warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Site 723 is located in a water depth of 808 m at the center of the oxygen minimum zone and the middle part of the main thermocline on the Oman Margin. Oxygen isotope curves of planktonic delta18OP and benthic delta18OB can be traced back continuously to Stage 23 with high resolution measurements. A tentative correlation to Stage 53 has been tried using oxygen isotope stratigraphy. The amplitudes of the fluctuations of the benthic delta18OB curve are small, compared with the planktonic delta18OP curve. The delays of benthic oxygen isotopes delta18OB related to the planktonic delta18OP appear in the transgressive stages. Carbon isotopes of benthic delta13CB and planktonic delta13CP generally show an inverse correlation with oxygen isotope values delta18OB and delta18OB and delta18OP, however, the changes of delta13C are more gradual than those of delta18O during transgressive stages in spite of the synchronized changes of delta13C with those of delta18O during regressive stages. The difference of oxygen isotope between benthic and planktonic foraminifers represents the degree of pushing up the thermocline by upwelling, and the difference of carbon isotope represents the relative amount of upwelling Sigma[CO2] to the biological uptake in the surface water. These isotopic differences can be used as indicators of upwelling and show strong upwelling in the interglacial and weak upwelling in the glacial stages. The organic carbon content is correlated with the isotopic upwelling indicators, and higher content is correlated with the isotopic upwelling indicators and higher content appears in the interglacial stages. The calculated rate of sedimentation based on oxygen isotope stratigraphy in glacial stages is significantly high, two to four times that of interglacial stages, and the absolute flux of fluvial sediments with variability of lithofacies increased in the glacial stage. The present glacial-interglacial cycle with the fluctuation of upwelling relating to the southwest monsoon can be traced back to Stage 8, 250 ka. From Stage 8 to 12, 250-450 ka, the upwelling indicator of oxygen isotope difference did not show such distinct cyclicity. For Stages 12-15, 450-600 ka, the upwelling can be estimated as strong as in interglacial stage of the present cycles, with slightly weak upwelling in the glacial stage. This upwelling and climate can be traced back to the late Pliocene. The strongest upwelling can be estimated in the Pliocene-Pleistocene time by the isotopic indicators and the high organic carbon content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthropogenic CO2 emissions are acidifying the world's oceans. A growing body of evidence is showing that ocean acidification impacts growth and developmental rates of marine invertebrates. Here we test the impact of elevated seawater pCO2 (129 Pa, 1271 µatm) on early development, larval metabolic and feeding rates in a marine model organism, the sea urchin Strongylocentrotus purpuratus. Growth and development was assessed by measuring total body length, body rod length, postoral rod length and posterolateral rod length. Comparing these parameters between treatments suggests that larvae suffer from a developmental delay (by ca. 8%) rather than from the previously postulated reductions in size at comparable developmental stages. Further, we found maximum increases in respiration rates of + 100 % under elevated pCO2, while body length corrected feeding rates did not differ between larvae from both treatments. Calculating scope for growth illustrates that larvae raised under high pCO2 spent an average of 39 to 45% of the available energy for somatic growth, while control larvae could allocate between 78 and 80% of the available energy into growth processes. Our results highlight the importance of defining a standard frame of reference when comparing a given parameter between treatments, as observed differences can be easily due to comparison of different larval ages with their specific set of biological characters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediments accumulate on the sea floor far from land with rates of a few millimetres to a few centimetres per thousand years. Sediments have been accumulating under broadly similar conditions, subject to similar controls, for the past 10 8 years and more. In principle we should be able to study the distribution of climatic variance with frequencies over the range 10**-3 to 10**-7 cycles per year with comparative ease. In fact, nearly all our data are heavily weighted towards the youngest part of the geological record. We study frequencies higher than 10**-4 cycles per year in the special case of a Pleistocene interglacial (the present one), and frequencies in the range 10**-4 to 10**-5 cycles per year in the special case of an ice-age. Although these may be of more direct interest to mankind than earlier periods, it may well be that we will understand the causes of climatic variability better if we can examine their operation over a longer time scale and under different boundary conditions. Rather than review the available data, I have collected some new data to show the feasibility of gathering a data base for examining climatic variability without this usual bias toward the recent. The most widely applicable tool for extracting climatic information from deep-sea sediments is oxygen isotope analysis of calcium carbonate microfossils. It is generally possible to select from the sediment both specimens of benthonic Foraminifera (that is, those that lived in ocean deep water at the sediment-water interface) and specimens of planktonic Foraminifera (that is, those that lived and formed their shells near the ocean surface, and fell to the sediment after death). Thus one is able to monitor conditions at the surface and at depth at simultaneous moments in the geological past. The necessity to analyse calcareous microfossils restricts investigation to calcareous sediments, but even with this restriction in sediment type there are many factors governing the rate of sediment accumulation. On a global scale, sediment accumulates so as to balance the input to the oceans from continental erosion. Even when averaged globally, long-term accumulation rates have varied by almost a factor of ten (Davies et al., 1977, doi:10.1126/science.197.4298.53). At the regional scale, surface productivity and deep-water physical and chemical conditions also affect the sediment accumulation rate. Since all these are susceptible to variation and may well vary in response to climatic change as well as other factors, it is extremely hazardous to attempt to express any climatic variable as a function of time on the basis of measurements originally made as a function of depth in sediment. Although time has been used as a basis for plotting Figs. i-8, these should be regarded as freehand sketches of climatic history rather than as time-series plots.