279 resultados para biological data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecological succession provides a widely accepted description of seasonal changes in phytoplankton and mesozooplankton assemblages in the natural environment, but concurrent changes in smaller (i.e. microbes) and larger (i.e. macroplankton) organisms are not included in the model because plankton ranging from bacteria to jellies are seldom sampled and analyzed simultaneously. Here we studied, for the first time in the aquatic literature, the succession of marine plankton in the whole-plankton assemblage that spanned 5 orders of magnitude in size from microbes to macroplankton predators (not including fish or fish larvae, for which no consistent data were available). Samples were collected in the northwestern Mediterranean Sea (Bay of Villefranche) weekly during 10 months. Simultaneously collected samples were analyzed by flow cytometry, inverse microscopy, FlowCam, and ZooScan. The whole-plankton assemblage underwent sharp reorganizations that corresponded to bottom-up events of vertical mixing in the water-column, and its development was top-down controlled by large gelatinous filter feeders and predators. Based on the results provided by our novel whole-plankton assemblage approach, we propose a new comprehensive conceptual model of the annual plankton succession (i.e. whole plankton model) characterized by both stepwise stacking of four broad trophic communities from early spring through summer, which is a new concept, and progressive replacement of ecological plankton categories within the different trophic communities, as recognised traditionally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological productivity and carbon export in the equatorial Atlantic are thought to have been dramatically higher during the last glacial period than during the Holocene. Here we reconstruct the pH and CO2 content of surface waters from the eastern equatorial Atlantic Ocean over the past ~30 k.y. using the boron isotope composition of Globigerinoides ruber (a mixed-layer-dwelling planktic foraminifera). Our new record, combined with previously published data, indicates that during the last glacial, in contrast to today, a strong west to east gradient existed in the extent of air:sea equilibrium with respect to pCO2 (DeltapCO2), with the eastern equatorial Atlantic acting as a significant source of CO2 (+100 µatm) while the western Atlantic remained close to equilibrium (+25 µatm). This pattern suggests that a fivefold increase in the upwelling rate of deeper waters drove increased Atlantic productivity and large-scale regional cooling during the last glacial, but the higher than modern DeltapCO2 in the east indicates that export production did not keep up with enhanced upwelling of nutrients. However, the downstream decline of DeltapCO2 provides evidence that the unused nutrients from the east were eventually used for biologic carbon export, thereby effectively negating the impact of changes in upwelling on atmospheric CO2 levels. Our findings indicate that the equatorial Atlantic exerted a minimal role in contributing to lower glacial-age atmospheric CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are two datasets on the reproductive investment in female Gambusia affinis: The mass of a number of propagules and their genotypic sex, as well as the mass and length of the mother from which they were removed. And the mass, length and number of offspring of each sex from a mother.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use a suite of eight ocean biogeochemical/ecological general circulation models from the MAREMIP and CMIP5 archives to explore the relative roles of changes in winds (positive trend of Southern Annular Mode, SAM) and in warming- and freshening-driven trends of upper ocean stratification in altering export production and CO2 uptake in the Southern Ocean at the end of the 21st century. The investigated models simulate a broad range of responses to climate change, with no agreement ona dominance of either the SAM or the warming signal south of 44° S. In the southernmost zone, i.e., south of 58° S, they concur on an increase of biological export production, while between 44 and 58° S the models lack consensus on the sign of change in export. Yet, in both regions, the models show an enhanced CO2 uptake during spring and summer. This is due to a larger CO 2 (aq) drawdown by the same amount of summer export production at a higher Revelle factor at the end of the 21st century. This strongly increases the importance of the biological carbon pump in the entire Southern Ocean. In the temperate zone, between 30 and 44° S all models show a predominance of the warming signal and a nutrient-driven reduction of export production. As a consequence, the share of the regions south of 44° S to the total uptake of the Southern Ocean south of 30° S is projected to increase at the end of the 21st century from 47 to 66% with a commensurable decrease to the north. Despite this major reorganization of the meridional distribution of the major regions of uptake, the total uptake increases largely in line with the rising atmospheric CO2. Simulations with the MITgcm-REcoM2 model show that this is mostly driven by the strong increase of atmospheric CO2, with the climate-driven changes of natural CO2 exchange offsetting that trend only to a limited degree (~10%) and with negligible impact of climate effects on anthropogenic CO2 uptake when integrated over a full annual cycle south of 30° S.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CO2/pH perturbation experiments were carried out under two different pCO2 levels (39.3 and 101.3 Pa) to evaluate effects of CO2-induced ocean acidification on the marine diatom Phaeodactylum tricornutum. After acclimation (>20 generations) to ambient and elevated CO2 conditions (with corresponding pH values of 8.15 and 7.80, respectively), growth and photosynthetic carbon fixation rates of high CO2 grown cells were enhanced by 5% and 12%, respectively, and dark respiration stimulated by 34% compared to cells grown at ambient CO2. The half saturation constant (Km) for carbon fixation (dissolved inorganic carbon, DIC) increased by 20% under the low pH and high CO2 condition, reflecting a decreased affinity for HCO3- or/and CO2 and down-regulated carbon concentrating mechanism (CCM). In the high CO2 grown cells, the electron transport rate from photosystem II (PSII) was photoinhibited to a greater extent at high levels of photosynthetically active radiation, while non-photochemical quenching was reduced compared to low CO2 grown cells. This was probably due to the down-regulation of CCM, which serves as a sink for excessive energy. The balance between these positive and negative effects on diatom productivity will be a key factor in determining the net effect of rising atmospheric CO2 on ocean primary production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several experiments have shown a decrease of growth and calcification of organisms at decreased pH levels. There is a growing interest to focus on early life stages that are believed to be more sensitive to environmental disturbances such as hypercapnia. Here, we present experimental data, acquired in a commercial hatchery, demonstrating that the growth of planktonic mussel (Mytilus edulis) larvae is significantly affected by a decrease of pH to a level expected for the end of the century. Even though there was no significant effect of a 0.25-0.34 pH unit decrease on hatching and mortality rates during the first 2 days of development nor during the following 13-day period prior to settlement, final shells were respectively 4.5±1.3 and 6.0±2.3% smaller at pHNBS~7.8 (pCO2~1100-1200 µatm) than at a control pHNBS of ~8.1 (pCO2~460-640 µatm). Moreover, a decrease of 12.0±5.4% of shell thickness was observed after 15d of development. More severe impacts were found with a decrease of ~0.5 pHNBS unit during the first 2 days of development which could be attributed to a decrease of calcification due to a slight undersaturation of seawater with respect to aragonite. Indeed, important effects on both hatching and D-veliger shell growth were found. Hatching rates were 24±4% lower while D-veliger shells were 12.7±0.9% smaller at pHNBS~7.6 (pCO2~1900 µatm) than at a control pHNBS of ~8.1 (pCO2~540 µatm). Although these results show that blue mussel larvae are still able to develop a shell in seawater undersaturated with respect to aragonite, the observed decreases of hatching rates and shell growth could lead to a significant decrease of the settlement success. As the environmental conditions considered in this study do not necessarily reflect the natural conditions experienced by this species at the time of spawning, future studies will need to consider the whole larval cycle (from fertilization to settlement) under environmentally relevant conditions in order to investigate the potential ecological and economical losses of a decrease of this species fitness in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The uptake of anthropogenic CO2 by the oceans has led to a rise in the oceanic partial pressure of CO2, and to a decrease in pH and carbonate ion concentration. This modification of the marine carbonate system is referred to as ocean acidification. Numerous papers report the effects of ocean acidification on marine organisms and communities but few have provided details concerning full carbonate chemistry and complementary observations. Additionally, carbonate system variables are often reported in different units, calculated using different sets of dissociation constants and on different pH scales. Hence the direct comparison of experimental results has been problematic and often misleading. The need was identified to (1) gather data on carbonate chemistry, biological and biogeochemical properties, and other ancillary data from published experimental data, (2) transform the information into common framework, and (3) make data freely available. The present paper is the outcome of an effort to integrate ocean carbonate chemistry data from the literature which has been supported by the European Network of Excellence for Ocean Ecosystems Analysis (EUR-OCEANS) and the European Project on Ocean Acidification (EPOCA). A total of 185 papers were identified, 100 contained enough information to readily compute carbonate chemistry variables, and 81 data sets were archived at PANGAEA - The Publishing Network for Geoscientific & Environmental Data. This data compilation is regularly updated as an ongoing mission of EPOCA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification and associated shifts in carbonate chemistry speciation induced by increasing levels of atmospheric carbon dioxide (CO2) have the potential to impact marine biota in various ways. The process of biogenic calcification, for instance, is usually shown to be negatively affected. In coccolithophores, an important group of pelagic calcifiers, changes in cellular calcification rates in response to changing ocean carbonate chemistry appear to differ among species. By applying a wider CO2 range we show that a species previously reported insensitive to seawater acidification, Coccolithusbraarudii, responds both in terms of calcification and photosynthesis, although at higher levels of CO2. Thus, observed differences between species seem to be related to individual sensitivities while the underlying mechanisms could be the same. On this basis we develop a conceptual model of coccolithophorid calcification and photosynthesis in response to CO2-induced changes in seawater carbonate chemistry speciation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification, due to anthropogenic CO2 absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive to environmental disturbances than adult stages. Although these studies have shown decreased growth rates and increased proportions of abnormal development under low pH conditions, they did not allow attribution to pH induced changes in physiology or changes due to a decrease in aragonite saturation state. This study aims to assess the impact of several carbonate-system perturbations on the growth of Pacific oyster (Crassostrea gigas) larvae during the first 3 days of development (until shelled D-veliger larvae). Seawater with five different chemistries was obtained by separately manipulating pH, total alkalinity and aragonite saturation state (calcium addition). Results showed that the developmental success and growth rates were not directly affected by changes in pH or aragonite saturation state but were highly correlated with the availability of carbonate ions. In contrast to previous studies, both developmental success into viable D-shaped larvae and growth rates were not significantly altered as long as carbonate ion concentrations were above aragonite saturation levels, but they strongly decreased below saturation levels. These results suggest that the mechanisms used by these organisms to regulate calcification rates are not efficient enough to compensate for the low availability of carbonate ions under corrosive conditions.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The speciation of dissolved zinc (Zn) was investigated by voltammetry in the Atlantic sector of the Southern Ocean along two transects across the major frontal systems: along the Zero Meridian and across the Drake Passage. In the Southern Ocean south of the APF we found detectable labile inorganic Zn throughout the surface waters in contrast to studies from lower latitudes. Using a combination of ASV titrations and pseudopolarography revealed the presence of significant concentration of electrochemically inert Zn ligands throughout the Southern Ocean. These ligands however were nearly always saturated due to the presence of excess concentrations of dissolved Zn that were associated with the high nutrient waters south of the Antarctic Polar Front (APF). Only in surface waters did the concentration of Zn complexing ligands exceed the dissolved Zn concentrations suggesting a biological source for these ligands. Our findings have clear implications for the biogeochemical cycling of Zn and for the interpretation of paleo records utilizing Zn in opal as a tracer of Zn speciation in the water column.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of pCO2 on carbon acquisition and intracellular assimilation was investigated in the three bloom-forming diatom species, Eucampia zodiacus (Ehrenberg), Skeletonema costatum (Greville) Cleve, Thalassionema nitzschioides (Grunow) Mereschkowsky and the non-bloom-forming Thalassiosira pseudonana (Hust.) Hasle and Heimdal. In vivo activities of carbonic anhydrase (CA), photosynthetic O2 evolution, CO2 and HCO3? uptake rates were measured by membrane-inlet mass spectrometry (MIMS) in cells acclimated to pCO2 levels of 370 and 800 ?atm. To investigate whether the cells operate a C4-like pathway, activities of ribulose-1,5-bisphosphate carboxylase (RubisCO) and phosphoenolpyruvate carboxylase (PEPC) were measured at the mentioned pCO2 levels and a lower pCO2 level of 50 ?atm. In the bloom-forming species, extracellular CA activities strongly increased with decreasing CO2 supply while constantly low activities were obtained for T. pseudonana. Half-saturation concentrations (K1/2) for photosynthetic O2 evolution decreased with decreasing CO2 supply in the two bloom-forming species S. costatum and T. nitzschioides, but not in T. pseudonana and E. zodiacus. With the exception of S. costatum, maximum rates (Vmax) of photosynthesis remained constant in all investigated diatom species. Independent of the pCO2 level, PEPC activities were significantly lower than those for RubisCO, averaging generally less than 3%. All examined diatom species operate highly efficient CCMs under ambient and high pCO2, but differ strongly in the degree of regulation of individual components of the CCM such as Ci uptake kinetics and extracellular CA activities. The present data do not suggest C4 metabolism in the investigated species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidifications on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~760 µatm) and those exposed to present day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During two expeditions of the R.V. "Polarstern" to the Arctic Ocean, pack ice and under-ice water samples were collected during two different seasons: late summer (September 2002) and late winter (March/April 2003). Physical and biological properties of the ice were investigated to explain seasonal differences in species composition, abundance and distribution patterns of sympagic meiofauna (in this case: heterotrophs >20 µm). In winter, the ice near the surface was characterized by extreme physical conditions (minimum ice temperature: -22°C, maximum brine salinity: 223, brine volume: <=5%) and more moderate conditions in summer (minimum ice temperature: -5.6°C, maximum brine salinity: 94, most brine volumes: >=5%). Conditions in the lowermost part of the ice did not differ to a high degree between summer and winter. Chlorophyll a concentrations (chl a) showed significant differences between summer and winter: during winter, concentrations were mostly <1.0 µg chl a/l, while chl a concentrations of up to 67.4 µmol/l were measured during summer. The median of depth-integrated chl a concentration in summer was significantly higher than in winter. Integrated abundances of sympagic meiofauna were within the same range for both seasons and varied between 0.6 and 34.1×103 organisms /m**2 in summer and between 3.7 and 24.8×10**3 organisms /m**2 in winter. With regard to species composition, a comparison between the two seasons showed distinct differences: while copepods (42.7%) and rotifers (33.4%) were the most abundant sea-ice meiofaunal taxa during summer, copepod nauplii dominated the community, comprising 92.9% of the fauna, in winter. Low species abundances were found in the under-ice water, indicating that overwintering of the other sympagic organisms did not take place there, either. Therefore, their survival strategy over the polar winter remains unclear.