730 resultados para background deep sea


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Desmoscolecida from the continental slope and the deep-sea bottom (59-4354 m) off the Portuguese and Moroccan coasts are described. 18 species were identified: Desmoscolex bathyalis sp. nov., D. chaetalatus sp. nov., D. eftus sp. nov., D. galeatus sp. nov., D. lapilliferus sp. nov., D. longisetosus Timm, 1970, D. lorenzeni sp. nov., D. perspicuus sp. nov., D. pustulatus sp. nov., Quadricoma angulocephala sp. nov., Q. brevichaeta sp. nov., Q. iberica sp. nov., Q. loricatoides sp. nov., Tricoma atlantica sp. nov., T. bathycola sp. nov., T. beata sp. nov., T. incomposita sp. nov., T. meteora sp. nov., T. mauretania sp. nov. 2. The following new terms are proposed: "Desmos" (ring-shaped concretions consisting of secretion and concretion particles), "desmoscolecoid" and "tricomoid" arrangement of the somatic setae, "regelmaessige" (regular), "unregelmaessige" (irregular), "vollstaendige" (complete) and "unvollstaendige" (incomplete) arrangement of somatic seta (variations in the desmoscolecoid arrangement of the somatic setae). The length of the somatic setae is given in the setal pattern. 3. Desmoscolecida identical as to genus and species exhibit no morphological differences even if forthcoming from different bathymetrical zones (deep sea, sublitoral, litoral) or different environments (marin, freshwater, coastal subsoil water, terrestrial environment). 4. Lorenzen's (1969) contention that thearrangement of the somatic setae is more significant for the natural relationships between the different genera of Desmoscolecida than other characteristics is further confirmed. Species with tricomoid arrangement of somatic setae are regarded as primitive, species with desmoscolecoid arrangement of somatic setae are regarded as more advanced. 5. Three new genus are established: Desmogerlachia gen. nov., Desmolorenzenia gen. nov. and Desmofimmia gen. nov. - Protricoma Timm, 1970 is synonymized with Paratricoma Gerlach, 1964 and Protodesmoscolex Timm, 1970 is synonymized with Desmoscolex Claparede,1863. 6. Checklists of all species of the order Desmoscolecida and keys to species of the subfamilies Tricominae and Desmoscolecinae are provided. 7. The following nomenclatorial changes are suggested: Desmogerlachia papillifer (Gerlach, 1956) comb. nov., D .pratensis (Lorenz, 1969) comb. nov., Desmotimmia mirabilis (Timm, 1970) comb. nov., Paratricoma squamosa (Timm, 1970) comb. nov., Desmolorenzenia crassicauda (Timm, 1970) comb. nov., D. desmoscolecoides (Timm, 1970) comb. nov., D. eurycricus (Filipjev, 1922) comb. nov., D. frontalis (Gerlach, 1952) comb. nov., D. hupferi (Steiner, 1916) comb. nov., D. longicauda (Timm, 1970) comb. nov., D. parva (Timm, 1970) comb. nov., D. platycricus (Steiner, 1916) comb. nov., D. viffata (Lorenzen, 1969) comb. nov., Desmoscolex anfarcficos (Timm, 1970) comb. nov.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global maps of sulfate and methane in marine sediments reveal two provinces of subsurface metabolic activity: a sulfate-rich open-ocean province, and an ocean-margin province where sulfate is limited to shallow sediments. Methane is produced in both regions but is abundant only in sulfate-depleted sediments. Metabolic activity is greatest in narrow zones of sulfate-reducing methane oxidation along ocean margins. The metabolic rates of subseafloor life are orders of magnitude lower than those of life on Earth's surface. Most microorganisms in subseafloor sediments are either inactive or adapted for extraordinarily low metabolic activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four species of gammaridean Amphipoda are recorded from the Iberian deep sea basin at about 5000 m depth: Bathyceradocus iberiensis sp. n., Paracallisoma platepistomum sp. n., Parandaniexis cf. mirabilis Schellenberg, 1929, and Paragissa galatheae Barnard, 1961. The biology of the four species is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water extracted from opal-CT ("porcellanite", "cristobalite"), granular microcrystalline quartz (chert), and pure fibrous quartz (chalcedony) in cherts from the JOIDES Deep Sea Drilling Project is 56? to 87? depleted in deuterium relative to the water in which the silica formed. This large fractionation is similar in magnitude and sign to that observed for hydroxyl in clay minerals and suggests that water extracted from these forms of silica has been derived from hydroxyl groups within the silica. Delta18O-values for opal-CT at sites 61, 64, 70B and 149 vary from 34.3? to 37.2? and show no direct correlation with depth of burial. Granular microcrystaUine quartz in these cores is 0.5 ? depleted in 18O relative to coexisting opal-CT at sediment depths of 100 m and the depletion increases to 2? for sediments buried below 384 m. These relationships suggest that opal-CT forms before significant burial while granular microcrystalline quartz forms during deeper burial at warmer temperatures. The temperature at which opal-CT forms is thus probably approximately equal to the temperature of the overlying bottom water. Isotopic temperatures deduced for opal-CT formation are preliminary and very approximate, but yield Eocene deep-water temperatures of 5-13°C, and 6°C for the upper Cretaceous sample. Pure euhedral quartz crystals lining a cavity in opal-CT at 388 m in core 8-70B-4-CC have a ~delta18O value of +29.8? and probably formed near maximum burial. The isotopic temperature is approximately 32 ° C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. On the cruises 3 and 15 of R.V. "Meteor" 6 grab samples, and 6 hauls with the 6 m Agassiztrawl were taken and at 2 stations the deep sea camera was lowered. This material gave quantitative results on the meiofauna and minimum counts of the macrofauna. 2. The nematodes constitute nearly 95% of the meiofauna, the copepoda only 2%. With increasing sediment depth the density of animals decrease gradually. In the uppermost centimeter of sediment 42.6% of the meiofauna are found while only 3.7% live in layer 6-7 cm. Meiofauna weight ranges from 0.6-5.7 mg/25 m**2 surface i.e. 0.24-2.8 g/m**2. 3. Mean numbers of individuals and weights show standard errors of 20-30 %. As an approximate average values for further considerations the weight of the meiofauna in the area was taken as 1 g/m**2 4. Quantitative information on the macrofauna is derived from the trawls and the photographs for the actinia Chitonanthus abyssorum only, which is found in the rate of 1 individual/36-72 m**2, but seems to be less abundant generally. 5. Animal density does not decrease steadily from nearshore to offshore biocoenoses, i.e. generally with increasing depth. The decrease is more pronounced for macro- than for meiofauna. For the deep sea the weight proportion of macrofauna : meiofauna is of the order of 1 : 1. 6. With the assumption, that adaptation of metabolism to deep sea conditions is similar in macro- and meiofauna total metabolism of invertebrates is ascribed to meiofauna to more than 80%. 7. The structure of the biocoenosis of the deep sea floor is characterized by the meiofauna living on and in the sediment and by the dominance of sediment feeders in the macrofauna. 8. Considering the large numbets and high partition rates of bacteria a comparative large part of the metabolism in the deep sea sediment must be ascribed to bacteria. This favours the hypothesis, that with increasing depth and decreasing addition of organic material to the sediment, the importance of meiofauna and microorganisms for total metabolism increases. 9. Considering the different modes of food transport to the deep sea environment, i.e. sinking of dead particles, transport by vertical migration of organisms, aggregation of organic particles, adsorption of dissoloved organic substance to inorganic particles, and heterotrophy, the sediment may be assumed to contain more food for invertebrates than the water above the bottom. 10. Suspensions feeders of macrofauna are fixed to hard substrates in the sediment surface. Some of them are shown to bend themselves down to the bottom in underwater photographs. This suggests the idea that some deep sea suspension feeders partly depend on food from the sediment surface, on which they feed directly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal structure of the Pacific Ocean between water depths of about 1 and 4.5 kilometers is estimated from the oxygen isotopic ratio of benthonic foraminifera from deep-drilled and piston cores of early Pliocene age (about 3 to 5 million years ago). The ratio of oxygen-18 to oxygen-16 in the early Pliocene at each site varies by an average of only ± 0.12 per mil (1 standard deviation). A plot of the oxygen isotopic ratio against modern bottom-water temperature is adequately fit by a line having a slope of - 0.26 per mil per degree Celsius (the equilibrium temperature dependence of calcite-water fractionation), suggesting that the temperature gradient of the Pacific Ocean during the early Pliocene was similar to that of today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of Sr/Ca of benthic foraminifera show a linear decrease with water depth which is superimposed upon significant variability identified by analyses of individual foraminifera. New data for Cd/Ca support previous work in defining a contrast between waters shallower and deeper than ~2500 m. Measured element partition coefficients in foraminiferal calcium carbonate relative to sea water (D) have been described by means of a one-box model in which elements are extracted by Rayleigh distillation from a biomineralization reservoir that serves for calcification with a constant fractionation factor (alpha), such that D = (1 - f**alpha)/(l - f), where f is the proportion of Ca remaining after precipitation. A modification to the model recognises differences in element speciation. The model is consistent with differences between D[Sr], D[Ba], and D[Cd] in benthic but not planktonic foraminifera. Depth variations in D for Sr and Ba are consistent with the model, as are differences in depth variation of D[Cd] in calcitic and aragonitic benthic foraminifera. The shallower depth variations may reflect increasing calcification rates with increasing water depth to an optimum of about 2500 m. Observations of unusually lower DCd for some deep waters, not accompanied by similar [Sr], or D[Ba] may be because of dissolution or a calcification response to a lower carbonate saturation state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 17 month record of vertical particle flux of dry weight, carbonate and organic carbon were 25.8, 9.4 and 2.4g/m**2/y, respectively. Parallel to trap deployments, pelagic system structure was recorded with high vertical and temporal resolution. Within a distinct seasonal cycle of vertical particle flux, zooplankton faecal pellets of various sizes, shapes and contents were collected by the traps in different proportions and quantities throughout the year (range: 0-4,500 10**3/m**2/d). The remains of different groups of organisms showed distinct seasonal variations in abundance. In early summer there was a small maximum in the diatom flux and this was followed by pulses of tinntinids, radiolarians, foraminiferans and pteropods between July and November. Food web interactions in the water column were important in controlling the quality and quantity of sinking materials. For example, changes in the population structure of dominant herbivores, the break-down of regenerating summer populations of microflagellates and protozooplankton and the collapse of a pteropod dominated community, each resulted in marked sedimentation pulses. These data from the Norwegian Sea indicate those mechanisms which either accelerate or counteract loss of material via sedimentation. These involve variations in the structure of the pelagic system and they operatè on long (e.g. annual plankton succession) and short (e.g. the end of new production, sporadic grazing of swarm feeders) time scales. Connecting investigation of the water column with a high resolution in time in parallel with drifting sediment trap deployments and shipboard experiments with the dominant zooplankters is a promising approach for giving a better understanding of both the origin and the fate of material sinking to the sea floor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pelagic clay of the east-central Pacific province is shown to be a mixture of three primary detrital components, reflecting continental source areas in Asia, North America, and Central and South America. Relative contributions from each source area are a function of geography, and this distribution appears to have remained constant over the past five million years, despite changing flux rates. A Q-mode factor analysis of downcore records for Pb, Sr, and Nd isotopes identified three factors that account for 98% of the total variance. These factors represent the radiogenic isotopic signatures of 1) late Cenozoic Asian dust, which dominates in the central North Pacific; 2) North American continental hemipelagic/eolian sources, restricted mainly to the easternmost North Pacific at ~30 °N latitude; and 3) Central and South American sources, restricted to areas east of ~100 °W longitude. South of the Intertropical Convergence Zone (~6 °N), the Asian dust signature diminishes abruptly. We conclude that late Cenozoic Asian dust sources can be isotopically differentiated downcore from both North American and South and Central American sources in the eastcentral Pacific. This approach has a utility for identifying changes in long-term Cenozoic atmospheric circulation patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discovered and investigated several cold-seep sites in four depth zones of the Sea of Okhotsk off Northeast Sakhalin: outer shelf (160-250 m), upper slope (250-450 m), intermediate slope (450-800 m), and Derugin Basin (1450-1600 m). Active seepage of free methane or methane-rich fluids was detected in each zone. However, seabed photography and sampling revealed that the number of chemoautotrophic species decreases dramatically with decreasing water depth. At greatest depths in the Derugin Basin, the seeps were inhabited by bacterial mats and bivalves of the families Vesicomyidae (Calyptogena aff. pacifica, C. rectimargo, Archivesica sp.), Solemyidae (Acharax sp.) and Thyasiridae (Conchocele bisecta). In addition, pogonophoran tubeworms of the family Sclerolinidae were found in barite edifices. At the shallowest sites, on the shelf at 160 m, the seeps lack chemoautotrophic macrofauna; their locations were indicated only by the patchy occurrence of bacterial mats. Typical seep-endemic metazoans with chemosynthetic symbionts were confined to seep sites at depths below 370 m. A comparative analysis of the structure of seep and background communities suggests that differences in predation pressure may be an important determinant of this pattern. The abundance of predators such as carnivorous brachyurans and asteroids, which can invade seeps from adjacent habitats and efficiently prey on sessile seep bivalves, decreased very pronouncedly with depth. We conclude from the obvious correlation with the conspicuous pattern in the distribution of seep assemblages that, on the shelf and at the upper slope, predator pressure may be high enough to effectively impede any successful settlement of viable populations of seep-endemic metazoans. However, there was also evidence that other depth-related factors, such as bottom-water current, sedimentary regimes, oxygen concentrations and the supply of suitable settling substrates, may additionally regulate the distribution of seep fauna in the area. As a consequence of the pronounced pattern in the distribution of seep communities, their ecological significance as food sources of surrounding background fauna increased with water depth. Isotopic analyses suggest that in the Derugin Basin seep colonists feed on chemoautotrophic seep organisms, either directly or by preying on metazoans with chemosynthetic symbionts. In contrast, seep organisms apparently do not contribute to the nutrition of the adjacent background fauna on the shelf and at the slope. In this area, elevated epifaunal abundances at seep sites were caused primarily by the availability of suitable settling substrates rather than by an enrichment of food supply.