245 resultados para Time in the peak


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The copepod Calanus glacialis plays a key role in the lipid-based energy flux in Arctic shelf seas. By utilizing both ice algae and phytoplankton, this species is able to extend its growth season considerably in these seasonally ice-covered seas. This study investigated the impacts of the variability in timing and extent of the ice algal bloom on the reproduction and population success of C. glacialis. The vertical distribution, reproduction, amount of storage lipids, stable isotopes, fatty acid and fatty alcohol composition of C. glacialis were assessed during the Circumpolar Flaw Lead System Study. Data were collected in the Amundsen Gulf, south-eastern Beaufort Sea, from January to July 2008 with the core-sampling from March to April. The reduction in sea ice thickness and coverage observed in the Amundsen Gulf in 2007 and 2008 affected the life strategy and reproduction of C. glacialis. Developmental stages CIII and CIV dominated the overwintering population, which resulted in the presence of very few CV and females during spring 2008. Spawning began at the peak of the ice algal bloom that preceded the precocious May ice break-up. Although the main recruitment may have occurred later in the season, low abundance of females combined with a potential mismatch between egg production/development to the first feeding stage and phytoplankton bloom resulted in low recruitment of C. glacialis in the early summer of 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Records of biogenic and terrigenous components have been obtained from the interval corresponding to the last 2.6 m.y. of ODP Sites 643 and 644 in order to reconstruct surface and deep water regimes in the Norwegian Sea. Surface water regimes record long lasting moderate glacial conditions during the interval 2.6 1.0 Ma. Small intrusions of Atlantic water episodically penetrated into the Norwegian Sea forming a narrow tongue along the eastern margin, which is documented at Site 644. The polar front was most probably situated between the Site 644 and 643 locations on the outer Voring Plateau during these time intervals. Deep water regimes reflect long-term persistent corrosive bottom waters, most probably due to a weakly undersaturated water column and a low rate of carbonate shell production in surface waters. Deep water production in the Norwegian-Greenland Sea may have operated in a different way, e.g. brine formation during winter sea ice growth. Bottom waters were oxygenated throughout the entire period, and deep water was exchanged persistently with the North Atlantic. Increased glacial/interglacial enviromental contrasts are documented, reflecting a strengthening of the Norwegian Current and intensified glaciations on the surrounding land masses during the interval 1.0 0.6 Ma. During this time a major shift in the mode of deep water production occurred. Tile onset of large amplitudes in glacial/interglacial environmental conditions with maximum contrasts in surface water regimes, different modes of deep water production, and intensified exchange with the North Atlantic marks the last 0.6 Ma. A broad development of the Norwegian Current is observed during peak interglacials, while during glacials seasonally variable sea ice cover and iceberg drift dominate surface water conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-resolution study of palaeoenvironmental changes through the late Younger Dryas and early Holocene in the Skagerrak, the eastern North Atlantic, is based on multi-proxy analyses of core MD99-2286 combined with palaeo-water depth modelling for the area. The late Younger Dryas was characterized by a cold ice-distal benthic foraminiferal fauna. After the transition to the Preboreal (c. 11 650 cal. a BP) this fauna was replaced by a Cassidulina neoteretis dominated fauna, indicating the influence of chilled Atlantic Water at the sea floor. Persisting relatively cold bottom-water conditions until c. 10 300 cal. a BP are presumably a result of an outflow of glacial meltwater from the Baltic area across south-central Sweden, which develops a strong stratification of the water column at MD99-2286. A short-term peak in the C/N ratio at c. 10 200 cal. a BP is suggested to indicate input of terrestrial material, which may represent the drainage of an ice-dammed lake in southern Norway, the Glomma event. After the last drainage route across south-central Sweden closed, c. 10 300 cal. a BP, the meltwater influence diminished, and the Skagerrak resembled a fjord with stable inflow of waters from the North Atlantic through the Norwegian Channel and a gradual increase in boreal species. Full interglacial conditions were established at the sea floor from c. 9250 cal. a BP. Subsequent warm stable conditions were interrupted by a short-term cooling around 8300-8200 cal. a BP, representing the 8.2 ka event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new planktic foraminifer transfer function (GSF18) related 5 North Atlantic assemblages to winter and summer sea surface temperature. GSF18, based on recombined and simplified core top census data, preserves most environmental information and reproduces modern North Atlantic conditions with approximately the same accuracy as previous transfer functions, but can be more readily applied to faunal samples ranging in age from Pliocene to Holocene. Transfer function GSF18 has been applied to faunal data from Deep Sea Drilling Project Hole 552A to produce a 2.5 m.y. sea-surface temperature (SST) time series. Estimates show several periods between 2.3 and 4.6 Ma during which mean SST's were both several degrees warmer and several degrees cooler than modern conditions. Between 2.9 and 4.0 Ma SST was generally warmer than modern except for a 250 k.y. interval centered at 3.3 Ma. Maximum SST, with respect to modern conditions, occurred after the cool interval near 3.1 Ma when SST was approximately 3.6° C warmer than present conditions. Comparison of SST estimates with stable isotope data suggest that after peak warming at 3.1 Ma, there was an overall surface water cooling with concomitant build up of global ice volume, culminating in Northern Hemisphere glaciation. This event is also indicated by the presence of ice rafted detritus in 552A sediments at about 2.45 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biogenic components of sediment accumulated at high rates beneath frontal zones of the Indian and Pacific oceans during the late Miocene and early Pliocene. The delta13C of bulk and foraminiferal carbonate also decreased during this time interval. Although the two observations may be causally linked, and signify a major perturbation in global biogeochemical cycling, no site beneath a frontal zone has independent records of export production and delta13C on multiple carbonate phases across the critical interval of interest. Deep Sea Drilling Project (DSDP) site 590 lies beneath the Tasman Front (TF), an eddy-generating jetstream in the southwest Pacific Ocean. To complement previous delta13C records of planktic and benthic foraminifera at this location, late Neogene records of CaCO3 mass accumulation rate (MAR), Ca/Ti, Ba/Ti, Al/Ti, and of bulk carbonate and foraminiferal delta13C were constructed at site 590. The delta13C records include bulk sediment, bulk sediment fractions (<63 µm and 5-25 µm), and the planktic foraminifera Globigerina bulloides, Globigerinoides sacculifer (with and without sac), and Orbulina universa. Using current time scales, CaCO3 MARs, Ca/Ti, Al/Ti and Ba/Ti ratios are two to three times higher in upper Miocene and lower Pliocene sediment relative to overlying and underlying units. A significant decrease also occurs in all delta13C records. All evidence indicates that enhanced export production - the 'biogenic bloom' - extended to the southwest Pacific Ocean between ca. 9 and 3.8 Ma, and this phenomenon is coupled with changes in delta13C - the 'Chron C3AR carbon shift'. However, CaCO3 MARs peak ca. 5 Ma whereas elemental ratios are highest ca. 6.5 Ma; foraminiferal delta13C starts to decrease ca. 8 Ma whereas bulk carbonate delta13C begins to drop ca. 5.6 Ma. Temporal discrepancies between the records can be explained by changes in the upwelling regime at the TF, perhaps signifying a link between changes in ocean-atmosphere circulation change and widespread primary productivity.