396 resultados para Stream-gaging stations
Resumo:
14C concentrations, as well as 14C, hydrographic and nutrient data are reported for 5 hydrographic stations that form a transatlantic section near 40° N ("Meteor" cruise no. 23, 1971). Precision (for 14C ± 0.3 ? or better) and comparability with literature data are specified. A planned intercomparison with the US GEOSECS program within the Newfoundland Basin deep water failed because of variability of water characteristics. The observed 14C values decrease from about Delta 14C = + 80 ? at the surface to -70 ? at 2000 m depth. Deeper down, the values west of the Midatlantic Ridge remain similar, whereas those east of the ridge decrease further, to about - 110 ?. It is shown that bomb-14C is prominent down to about 1500 m depth. Beyond this depth the bomb 14C component is small and is negligible in the eastern basin below 2800 m. On the basis of the 14C-tritium correlation, the distribution of natural 14C below about 1500 m depth is derived from the observations. In the deep and bottom water east of the ridge the 14C-salinity relationship seemingly is non-linear. Contrary to expectation, the 14C concentration in the bottom water is not lower than found on an US GEOSECS station near 10° N. Apparently, lateral concentration differences in the Northeast Atlantic bottom water as well as nonlinearity of the 14C-salinity relationship at 40° N do not exceed 10 ? in Delta 14C.
Resumo:
Distributions of Mn, Fe, Cu, Cd, Cr, Co and Ni in sea water are investigated (42 samples, dissolved and particulate forms) in the vicinity of the underwater gas vent field on the northwestern slope of the Paramushir Island. While regular background distributions of the elements occur in the shore zone, there is a column of elevated concentrations of particulate matter, particulate Mn, and dissolved Mn, Fe, Cu, Cd, Cr, Co and Ni that coincides with location of the gas plume. This column can be traced as high as 780 m above the bottom. High metal concentrations in water of the plume are attributable to physico-chemical concentration at the phase interface; the source of elevated mineral concentrations is obviously flux of dissolved minerals from interstitial waters, which extends to considerable distances in vertical direction.