293 resultados para SONAR
Resumo:
Bathymetry based on data recorded during M51-4 between 13.12.2001 and 28.12.2001 in the Black Sea. The purpose of the present-study was to sample sediments and the water columns of the nw/sw Black Sea and the E Marmara Sea to study a) a high resolution sediment records of Holocene climate, b) biogeochemical associated with deep anaerobic methane oxidation, and c) element cycling in the stratified water column. Bathymetric data (hydrosweep + parasound) was primarily used to choose appropriate sites for coring of undisturbed sediments. Samples were taken for future analyses of abundance and activity of bacteria, geochemistry and dating.
Resumo:
Snow height was measured by the Snow Depth Buoy 2015S22, an autonomous platform, drifting on Arctic sea ice, deployed during the Norwegian Young sea ICE cruise (N-ICE 2015) project. The resulting time series describes the evolution of snow depth as a function of place and time between 2015-03-01 and 2015-05-06 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses.
Resumo:
Snow height was measured by the Snow Depth Buoy 2015S26, an autonomous platform, drifting on Arctic sea ice, deployed during the Norwegian Young sea ICE cruise (N-ICE 2015) project. The resulting time series describes the evolution of snow depth as a function of place and time between 2015-01-24 and 2015-02-21 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses.
Resumo:
Bathymetry based on data recorded during M72-3 between 17.03.2007 and 23.04.2007 in the Black Sea. This cruise concentrated on interdisciplinary work on gas hydrates with a main focus on the gas hydrate transition zone in and below 750 m water depth. Gas hydrate environments have been studied in various geological settings, mainly of the eastern Black Sea. Origins, distributions and dynamics of methane and gas hydrates in sediments and also methane fluxes from the sediment to the water column have been the focus. Main working areas were the Sorokin Trough, an area south of the Kerch Strait and the Andrusov Ridge in Ukrainian waters and the Gudauta Ridge and Gurian Trough in Georgian waters.
Resumo:
Bathymetry based on data recorded during TTR6 between 05.07.1996 and 20.08.1996 in the Black Sea. In the central Black Sea, the aim of TTR-6 the investigation was a bathymetric map of a field of mud volcanoes known from the previous TTR cruises, during transit. In the Sorokin Trough, where gas hydrates were earlier obtained from sea bottom sediments the primary goals concerned the elucidation of the structure of clay diapiric folds and the searching for mud volcanoes and other evidence for fluid flux through the seafloor. The task of looking for the seafloor manifestation of deep fluid emanation was set in the Pallas Uplift area. The EM12s surveying on the Caucasian margin was aimed at the construction of the first detailed bathymetric map of this area.
Resumo:
During Leg ANT-XXIII/9 on the 31st March 2007 the German research vessel Polarstern mapped a significant bathymetric feature with its swath sonar system at the north-west margin of the Kerguelen Plateau. Due to the fact, that the feature was discovered just a month after the third IPY 2007/2008 has started, it was named after Graf Wilczek who, together with Carl Weyprecht, had promoted the first IPY. The undersea feature name proposal was officialy accepted by the GEBCO Sub-Committee on Undersea Feature Names (SCUFN) at its 20th meeting in late July and was added to the GEBCO Gazetteer of UFN (http://www.iho.shom.fr/COMMITTEES/GEBCO/SCUFN/scufn_intro.htm). ______________ Graf Hans Wilczek (Notation of the name from the book of Wilczek's daughter Elisabeth Kinsky- Wilczek). The Austrian naval hero Tegetthoff in 1871 planned an expedition to the southern hemisphere. The geophysicist G. Neumayer (1826-1909) already was selected as its chief scientist. Also the naval officer Carl Weyprecht (1838-1881) and the mountaineer Julius Payer (1841-1915) were to participate. Because of the sudden death of Tegettoff the project came to a halt and eventually was cancelled. By support of the well known geographer August Petermann (1822-1878) Weyprecht and Payer made a voyage into the Barents Sea which made them believe having seen the "open polar sea". An additional undertaking to confirm and to extend the find was obvious. At this stage of the affair count Hans Wilczek (1837-1922) got involved. He not only fostered a new expedition with a considerable sum of money, but he participated in commanding a support vessel to Novaya Zemlya. Wilczek managed to get home but the expedition vessel under Weyprecht's command became imprisoned in the pack for two years and at least had to be abandoned. After an adventurous trip back to civilisation Weyprecht changed his mind in what he considered the best way of polar research. Together with Wilczek in 1875 he started the promotion of international station-based polar exploration - the IPY was born. Wilczek guaranteed the constitution of an Austrian station on Novaya Zemlya and was ready to winter over there personally. Because of several political and other obstructions the beginning of the IPY was delayed till 1882. Wilczek's friend Weyprecht had passed away already. The command of the Austrian station, eventually erected on Jan Mayen, was given to Emil v. Wohlgemuth (1843-1896). Wilczek financed the main part of the Austrian IPY participation. Wilczek is described as honest and popular. On the one hand acquainted with the most prominent persons of his days, he respected everybody and had many relationships with scientists and artists. There is a kind of autobiography under the title: Hans Wilczek erzählt seinen Enkeln Erinnerungen aus seinem Leben (Hans Wilczek tells his grandchildren reminiscences from his life); edited by his daughter Elisabeth Kinsky-Wilczek, Graz 1933, 502 p. The book is available in an English version: Happy Retrospect - the Reminiscences of Count Wilczek 1837-1922, Bell and Sons, London 1934, 295 p.
Resumo:
Snow height was measured by the Snow Depth Buoy 2015S18, an autonomous platform, drifting on Antarctic sea ice, deployed during POLARSTERN cruise ANT-XXX/2 (PS89). The resulting time series describes the evolution of snow depth as a function of place and time between 2015-01-03 and 2015-01-18 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses.
Resumo:
Bathymetry based on data recorded during POS317-3 between 19.09.2004 and 13.10.2004 in the Black Sea. This cruise concentrated on bathymetric mapping and mapping of gas seeps by hydro-acoustic detection of gas flares in the water column and the quantification of microbial turnover of gassy sediments and microbial mats. The major objective during POS317-3 was the characterization and identification of microorganisms involved in the anaerobic methane oxidation in the sediment and in microbial mats. As part of these investigations characteristic organic molecules will be identified, which can be used as biomarkers for anaerobic methane oxidizing microorganisms.
Resumo:
Results of detailed geomagnetic and geomorphological studies carried out by R/V Akvanavt together with data obtained by a side-scanning sonar and high-frequency profiles from a towed Zvuk-4 vehicle plus results of visual observations of deep-sea manned Pisces submersible have shown that the spreading axis is divided into segments, whose strike (330°) differs from the overall strike (310°) of the axial magnetic anomaly. In the study area segments are about 1 km long and transform displacements are 0.5 km. Calculations on a model have shown that spreading is asymmetric: during the Brunhes epoch accretion rate of the African Plate was 6 mm/yr and that of the Arabian Plate 7 mm/yr. Earlier it had been 9 and 11 mm/yr, respectively.
Resumo:
Bathymetry based on data recorded during M84-2 between 26.02.2011 and 02.04.2011 in the Black Sea. The aim of the cruise was to investigate the gas hydrate distribution in sediments of the Black Sea by using several coring technics. In addition to the coring activities the installed EM122 and the PARASOUND system were used to detect gas emissions in the water column and to map large areas of possible seep sites.
Resumo:
Bathymetry based on data recorded during M84-2 between 26.02.2011 and 02.04.2011 in the Black Sea. The aim of the cruise was to investigate the gas hydrate distribution in sediments of the Black Sea by using several coring technics. In addition to the coring activities the installed EM122 and the PARASOUND system were used to detect gas emissions in the water column and to map large areas of possible seep sites.
Resumo:
Bathymetry based on data recorded during M84-2 between 26.02.2011 and 02.04.2011 in the Black Sea. The aim of the cruise was to investigate the gas hydrate distribution in sediments of the Black Sea by using several coring technics. In addition to the coring activities the installed EM122 and the PARASOUND system were used to detect gas emissions in the water column and to map large areas of possible seep sites.
Resumo:
We investigated gas bubble emissions at the Don-Kuban paleo-fan in the northeastern Black Sea regarding their geological setting, quantities as well as spatial and temporal variabilities during three ship expeditions between 2007 and 2011. About 600 bubble-induced hydroacoustic anomalies in the water column (flares) originating from the seafloor above the gas hydrate stability zone (GHSZ) at ~700 m water depth were found. At about 890 m water depth a hydrocarbon seep area named "Kerch seep area" was newly discovered within the GHSZ. We propose locally domed sediments ('mounds') discovered during ultra-high resolution bathymetric mapping with an autonomous underwater vehicle (AUV) to result from gas hydrate accumulation at shallow depths. In situ measurements indicated spatially limited temperature elevations in the shallow sediment likely induced by upward fluid flow which may confine the local GHSZ to a few meters below the seafloor. As a result, gas bubbles are suspected to migrate into near-surface sediments and to escape the seafloor through small-scale faults. Hydroacoustic surveys revealed that several flares originated from a seafloor area of about 1 km**2 in size. The highest flare disappeared in about 350 m water depth, suggesting that the released methane remains in the water column. A methane flux estimate, combining data from visual quantifications during dives with a remotely operated vehicle (ROV) with results from ship-based hydroacoustic surveys and gas analysis revealed that between 2 and 87 x 10**6 mol CH4 yr-1 escaped into the water column above the Kerch seep area. Our results show that the finding of the Kerch seep area represents a so far underestimated type of hydrocarbon seep, which has to be considered in methane budget calculations.