284 resultados para SFS 6000


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Australian-Indonesian monsoon has a governing influence on the agricultural practices and livelihood in the highly populated islands of Indonesia. However, little is known about the factors that have influenced past monsoon activity in southern Indonesia. Here, we present a ~6000 years high-resolution record of Australian-Indonesian summer monsoon (AISM) rainfall variations based on bulk sediment element analysis in a sediment archive retrieved offshore northwest Sumba Island (Indonesia). The record suggests lower riverine detrital supply and hence weaker AISM rainfall between 6000 yr BP and ~3000 yr BP compared to the Late Holocene. We find a distinct shift in terrigenous sediment supply at around 2800 yr BP indicating a reorganization of the AISM from a drier Mid Holocene to a wetter Late Holocene in southern Indonesia. The abrupt increase in rainfall at around 2800 yr BP coincides with a grand solar minimum. An increase in southern Indonesian rainfall in response to a solar minimum is consistent with climate model simulations that provide a possible explanation of the underlying mechanism responsible for the monsoonal shift. We conclude that variations in solar activity play a significant role in monsoonal rainfall variability at multi-decadal and longer timescales. The combined effect of orbital and solar forcing explains important details in the temporal evolution of AISM rainfall during the last 6000 years. By contrast, we find neither evidence for volcanic forcing of AISM variability nor for a control by long-term variations in the El Niño-Southern Oscillation (ENSO).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benthic and planktonic 14C ages are presented for the last glacial termination from marine sediment core VM21-30 from 617 m in the eastern equatorial Pacific. The benthic-planktonic 14C age differences in the core increased to more than 6000 years between Heinrich 1 time and the end of the Younger Dryas period. Several replicated 14C ages on different benthic and planktonic species from the same samples within the deglacial section of the core indicate a minimal amount of bioturbation. Scanning electron microscopy reveals no evidence of calcite alteration or contamination. The oxygen isotope stratigraphy of planktonic and benthic foraminifera does not indicate anomalously old (glacial age) values, and there is no evidence of a large negative stable carbon isotope excursion in benthic foraminifera that would indicate input of old carbon from dissociated methane. It appears, therefore, that the benthic 14C excursion in this core is not an artifact of diagenesis, bioturbation, or a pulse of methane. A benthic D14C stratigraphy reconstructed from the 14C ages from the deglacial section of VM21-30 appears to match that of Baja margin core MV99-MC19/GC31/PC08 (705 m), but the magnitude of the low-14C excursion is much larger in the VM21-30 record. This would seem to imply that the VM21-30 core was closer to the source of 14C-depleted waters during the deglaciation, but the source of this CO2 remains elusive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollen records from perennially frozen sequences provide vegetation and climate reconstruction for the last 48,000 14C years in the central part of Taymyr Peninsula. Open larch forest with Alnus fruticosa and Betula nana grew during the Kargin (Middle Weichselian) Interstade, ca. 48,000-25,000 14C yr B.P. The climate was generally warmer and wetter than today. Open steppe-like communities with Artemisia, Poaceae, Asteraceae, and herb tundralike communities with dwarf Betula and Salix dominated during the Sartan (Late Weichselian) Stade, ca. 24,000-10,300 14C yr B.P. The statistical information method used for climate reconstruction shows that the coldest climate was ca. 20,000-17,000 14C yr B.P. A warming (Allerød Interstade?) with mean July temperature ca. 1.5°C warmer than today occurred ca. 12,000 14C yr B.P. The following cooling with temperatures about 3°-4°C cooler than present and precipitation about 100 mm lower corresponds well with the Younger Dryas Stade. Tundra-steppe vegetation changed to Betula nana-Alnus fruticosa shrub tundra ca. 10,000 14C yr B.P. Larch appeared in the area ca. 9400 14C yr B.P. and disappeared after 2900 14C yr B.P. Cooling events ca. 10,500, 9600, and 8200 14C yr B.P. characterized the first half of the Holocene. A significant warming occurred ca. 8500 14C yr B.P., but the Holocene temperature maximum was at about 6000-4500 14C yr B.P. The vegetation cover approximated modern conditions ca. 2800 14C yr B.P. Late Holocene warming events occurred at ca. 3500, 2000, and 1000 14C yr B.P. A cooling (Little Ice Age?) took place between 500 and 200 14C yr ago.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biogenic-related elements Ca, Sr, Ba, P, Cd, scavenged Al, and Ti were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) for Core NS93-5 from the west slope of the South China Sea. Terrestrial input as estimated from the accumulation of Ti was higher during glacials than during interglacials. Carbonate accumulation rates are inversely related to those of terrestrial input, suggesting higher production of calcareous phytoplankton during interglacials. The accumulation patterns of authigenic Sr, Ba, P, and Cd match that of carbonate, further indicating higher calcareous phytoplankton production during interglacials. Scavenged Al and excess SiO2, which is related to biogenic opal, exhibit higher accumulation rates during glacials and correspond with changes in terrestrial input. This indicates that terrestrial input driven is important to siliceous phytoplankton production but not for calcareous phytoplankton production. As calcareous phytoplankton is the dominant component of the biogenic sediments in the South China Sea, particularly during interglacials, previous inference of higher productivity in the South China Sea during glacials based on only the biogenic opal proxy needs to be reconsidered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fine-grained clay subfractions (SFs) with particle size of <0.1, 0.1-0.2, 0.2-0.3, 0.3-0.6, 0.6-2.0, and 2-5 µm separated from claystone of Upper Precambrian Pumanskaya and Poropelonskaya formations on the Srednii Peninsula were studied by transmission electron microscopy, X-ray diffraction, and Rb-Sr methods. All subfractions consist of low-temperature illite and chlorite, and contribution of chlorite decreases with diminishing particle size. The crystallinity index and I002/I001 ratio increase from coarse- to fine-grained SFs. Leaching by ammonium acetate solution and Rb-Sr systematics in combination with mineralogical and morphological data indicate that illite in Upper Proterozoic claystone from the Srednii Peninsula formed during three time intervals: 810-830, 610-620, and about 570 Ma ago. The first generation of this mineral with low Rb/Sr ratio dominates in coarse-grained SFs while the second and third generations with a high Rb/Sr ratio prevail in fine-grained SFs. All of three generations are known in Poropelon claystone, whereas Puman claystone contains only illite of the first and second generations. Geological processes responsible for multistage illite evolution in claystones are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gabbronoritic cumulates drilled at DSDP Site 334 (Mid-Atlantic Ridge off the FAMOUS area) are neither crystallization products of the associated basalts, nor from any MORB composition documented along ocean ridges. Their parent melts are richer in SiO2 than MORB at a given MgO content, as attested by the crystallization sequence starting with an olivine+calcic and sub-calcic pyroxene assemblages. These melts are issued from a source highly depleted in incompatible elements, likely residual peridotite left after MORB extraction. To understand the role of water in the genesis of these lithologies whose occurrence in a mid-ocean ridge setting is rather puzzling, we performed a geochemical study on clinopyroxene separates following an analytical protocol able to remove the effects of water rock interactions post-dating their crystallization. Accordingly, the measured isotopic signatures can be used to trace magma sources. We find that Site 334 clinopyroxenes depart from the global mantle correlation: normal MORB values for the 143Nd/ 144Nd ratio (0.51307-0.51315) are associated to highly radiogenic 87Sr / 86Sr (0.7034-0.7067) ratios. This indicates that the parent melts of Site 334 cumulates are issued from a MORB source but that seawater contamination occurred at some stage of their genesis. The extent of contamination, traced by the Sr isotopic signature, is variable within all cumulates but more developed for gabbronorites sensus stricto, suggesting that seawater introduction was a continuous process during all the magmatic evolution of the system, from partial melting to fractional crystallization. Simple masse balance calculations are consistent with a contaminating agent having the characters of a highly hydrated (possibly water saturated) silica-rich melt depleted in almost all incompatible major, minor and trace elements relative to MORB. Mixing in various proportions of contaminated melts similar to the parent melts of Site 334 cumulates with MORB can account for part of the variability in the Sr isotopic signature of oceanic basalts, among other to the short wavelength isotopic "noise" superimposed on regional trends. We conclude that seawater introduction into residual peridotite at shallow depth beneath mid-ocean ridges can lead mantle rocks and their melts to follow complex P-T-fH2O paths that mimic petrogenetic contexts classically attributed to subduction zone environments, like the production of boninitic-andesitic magmas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hole 504B in the eastern equatorial Pacific has been the focus of five scientific drilling expeditions since it was first drilled in 1979. During these five legs, a series of temperature logs has been obtained over a time span of almost 8 yr, documenting the geothermal and hydrologic state of the oceanic crust in this region. Immediately following reentry at the onset of ODP Leg 111 operations, a high-resolution temperature probe was lowered into the borehole and a precise record of temperature vs. depth in Hole 504B was recorded down to 1300 mbsf. As was observed during previous legs, the temperature gradient in the upper 400 m was reduced, indicating that downhole flow of cool ocean waters through the casing continued, though at a diminished rate. As subhydrostatic pressures in the upper basement have gradually diminished, the volume of flow has decayed from an estimated 6000-7000 L/hr in late 1979 to about 80 L/hr during Leg 111. At depths below 480 mbsf, a predominantly conductive heat transfer environment enabled the temperature gradient log to be analyzed with respect to lithology on both fine and broad scales. Anomalies in the gradient log in the cased section through the sedimentary column were found to correspond to biostratigraphic age markers and/or sharp changes in sediment composition and texture. Broad variations in temperature gradient within the basement correlated with large-scale porosity trends. Conductive heatflow estimates depict a systematic reduction with depth, ranging from approximately 196 mW/m**2 in the sediments to 120 ± 17 mW/m**2 at 1300 mbsf. Possible causes for this observation were examined from several perspectives, but none was suitably convincing. A fluid instability analysis indicated the likely existence of convection cells within the borehole and substantiated the hypothesis of mixing within the borehole postulated from isotopic and chemical studies of borehole waters. However, such mixing of borehole fluids does not provide an adequate explanation for the heatflow variations, and the disparity between surficial and deep values of heat flow remains unresolved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on a qualitative and quantitative evaluation of Recent sediments samples (top 3 cm of cores as well as Petersen grab samples) from the Drake Passage, between South America and Antarctica, the distribution of planktonic foraminifera and their relation to oceanographic conditions was investigated. The Antarctic Convergence - the northern limit of the cold Antarctic Surface Water - is shown to be of major importance in controlling the distributional pattern of planktonic species as well as their total numbers. South of the convergence, Globigerina pachyderma is usually the only species found in the sediment. It occurs with abundances not greater than 6000 per gram dry sediment, and at most stations less than 100 specimens per gram of dry sediment were recovered. At a number of deep-sea stations below 3700 m depth approx. no planktonic foraminifera were found at all. It is most probable, that at least some of these stations are located below the limit of CaCO3 dissolution. North of the Antarctic Convergence planktonic foraminiferal numbers are much higher and range from 1800 to 120000 per gram of dry sediment. Eight species are the major constituents of the population: Globigerina pachyderma, Globigerina bulloides, Globogerina quinqueloba, Globigerina inflata, Globorotalia truncatolinoides, Globorotalia scitula, Globigerinita glutinata and Globigerinita uvula. The widespread occurrence of Globorotalia truncatulinoides, which in the northern hemisphere is usually a subtropical form, is especially noteworthy. Another Globigerina, morphologically similar to G. pachyderma, has been recognized frequently north of the Antarctic Convergence. Globigerina megastoma which has its type area in the Drake Passage, has been found only rarely. Orbulina universa occurs in samples from the areas of higher water temperature around the South American Continent. Globigerina pachyderma is predominantly sinistrally coiled throughout the area investigated, but a slight increase in the percentage of dextrally coiled specimens may be noticed with increasing water temperature, i.e. from south to north.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide a compilation of downward fluxes (total mass, POC, PON, BSiO2, CaCO3, PIC and lithogenic/terrigenous fluxes) from over 6000 sediment trap measurements distributed in the Atlantic Ocean, from 30 degree North to 49 degree South, and covering the period 1982-2011. Data from the Mediterranean Sea are also included. Data were compiled from different sources: data repositories (BCO-DMO, PANGAEA), time series sites (BATS, CARIACO), published scientific papers and/or personal communications from PI's. All sources are specifed in the data set. Data from the World Ocean Atlas 2009 were extracted to provide each flux observation with contextual environmental data, such as temperature, salinity, oxygen (concentration, AOU and percentage saturation), nitrate, phosphate and silicate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The radiogenic isotope composition of the Rare Earth Element (REE) neodymium (Nd) is a powerful water mass proxy for present and past ocean circulation. The processes controlling the Nd budget of the global ocean are not quantitatively understood and in particular source and sink mechanisms are still under debate. In this study we present the first full water column data set of dissolved Nd isotope compositions and Nd concentrations for the Eastern Equatorial Pacific (EEP), where one of the globally largest Oxygen Minimum Zones (OMZ) is located. This region is of particular interest for understanding the biogeochemical cycling of REEs because anoxic conditions may lead to release of REEs from the shelf, whereas high particle densities and fluxes potentially remove the REEs from the water column. Data were obtained between 11400N and 161S along a nearshore and an offshore transect. Near surface zonal current bands, such as the Equatorial Undercurrent (EUC) and the Subsurface Countercurrent (SSCC), which are supplying oxygen-rich water to the OMZ are characterized by radiogenic Nd isotope signatures (eNd=-2). Surface waters in the northernmost part of the study area are even more radiogenic (eNd = +3), most likely due to release of Nd from volcanogenic material. Deep and bottom waters at the southernmost offshore station (141S) are clearly controlled by advection of water masses with less radiogenic signatures (eNd=- 7) originating from the Southern Ocean. Towards the equator, however, the deep waters show a clear trend towards more radiogenic values of up to eNd=-2. The northernmost station located in the Panama basin shows highly radiogenic Nd isotope signatures in the entire water column, which indicates that particle scavenging, downward transport and release processes play an important role. This is supported by relatively low Nd concentrations in deep waters (3000-6000 m) in the EEP (20 pmol/kg) compared to locations in the Northern and Central Pacific (40-60 pmol/kg), which suggests enhanced removal of Nd in the EEP.