905 resultados para Ormosia nitida
Resumo:
A virtually complete composite history of Cenozoic pelagic sedimentation was recovered from ODP Sites 738 (62°43' S) and 744 (61°35' S), drilled during Leg 119 on the Kerguelen Plateau. An excellent magnetobiochronologic record was obtained from upper Eocene through Holocene sediments at Site 744, and an expanded lower Paleocene through lower Oligocene sequence was cored at Hole 738. Analysis of the stratigraphic distribution of over 125 planktonic foraminifer taxa from these sites reveals changes in species composition that were strongly influenced by the climatic evolution of Antarctic water masses. Early Paleocene planktonic foraminifer assemblages are nearly identical in species composition to coeval assemblages from low and middle latitude sites, showing the same patterns of post-extinction recovery and taxonomic radiation. Biogeographic isolation, revealed by the absence of tropical keeled species, became apparent by late early Paleocene time. Diversity increased near the Paleocene/Eocene boundary when keeled morozovellids immigrated to the Kerguelen Plateau. Greatest diversity (23 species) was achieved by early Eocene time, corresponding to a Cenozoic warming maximum that has been recognized in lower Eocene deep sea and terrestrial sediments worldwide. A gradual decline in diversity from the late early through middle Eocene, primarily due to the disappearance of acarininids, parallels the record of cooling paleotemperatures in Southern Ocean surface waters. Chiloguembelina-dominated assemblages appeared in the late middle Eocene and persisted through the early Oligocene as Antarctic surface waters became thermally isolated. Late Eocene and early Oligocene assemblages exhibit considerably lower diversity than the older Eocene faunas, and were dominated by chiloguembelinids, subbotinids, and catapsydracids during a time of pronounced climatic cooling and development of continental glaciation on East Antarctica. The small foraminifer Globigerinit? juvenilis replaced chiloguembelinids as the dominant taxon during the late Oligocene. Diversity increased slightly toward the end of the late Oligocene with new appearances of several tenuitellid, globoturborotalitid, and globigerinid species. The trend toward diminishing planktonic foraminifer diversity was renewed during the late early Miocene as siliceous productivity increased in the Antarctic surface waters, culminating with the reduction to nearly monospecific assemblages of Neogloboqu?drin? p?chyderm? that occur in Pliocene-Holocene biosiliceous sediments. An Antarctic Paleogene zonal scheme previously devised for ODP Sites 689 and 690 in the Weddell Sea is used to biostratigraphically subdivide the Kerguelen Plateau sequence. The definition of one Antarctic Paleogene biozone is modified in the present study to facilitate correlation within the southern high latitudes. The ages of 13 late Eoceneearly Miocene datum events are calibrated based on a magnetobiochronologic age model developed for Site 744.
Resumo:
Oxygen and carbon isotope measurements have been made in picked planktonic and benthonic foraminifers from the five sites drilled on Leg 74, covering the whole Cenozoic. For the Neogene, the coverage gives good information on the development of the vertical temperature structure of Atlantic deep water. For the Paleogene, vertical gradients were weak and it is possible to combine data from different sites to obtain a very detailed record of both the temperature and carbon isotope history of Atlantic deep waters.
Resumo:
Site 958 was drilled to monitor the late Neogene history of both continental aridity in northwestern Africa and the Canary Current distant from nearshore upwelling. Based on magnetostratigraphy, biostratigraphic datums, variations in carbonate, coarse fraction components, and the species composition of planktonic foraminifers, as well as using the d18O records of Globigerinoides ruber (white), we established a splice between Holes 958A and 958B and a stratigraphic age scale deciphering Milankovitch cycles. Over the last 630 k.y., sedimentation rates amount to 2.9 cm/k.y., and to 2.05-2.53 cm/k.y. back to the base of the Pleistocene. Extremely low rates of 0.4 cm/k.y. and a reworking of fossils mark the late Pliocene. The first continuous, long, sea-surface temperature (SST) record from the center of the Canary Current, which is based on foraminifer species census data, depicts a general temperature decrease in the late Pliocene, lower SST and high seasonalities of up to 6°C ~2.0-1.6 Ma, a warmer interval from 1.6 Ma to ~0.85 Ma, again lower SST and higher seasonalities until 0.33 or 0.26 Ma, and a final warmer interval, lasting until at least 50 ka, possibly reflecting the attenuated dynamics of the Canary Current. Especially over the last 400 k.y., since Stage 11, glacial stages are hardly reflected by cold SST cycles, except for various abrupt and extremely short cooling events amounting to D6°C, which possibly result from North Atlantic Heinrich events. Similar, but not necessarily synchronous, events of short-term, extremely high values occur in the paleoproductivity and (d13Cbased) paleonutrient records, which indicate a generally low primary production averaging to 180 g C m**-2 yr**-1 at 50-330 ka and about 300 g C m**-2 yr**-1 back to the base of the Pleistocene. Near 1.2-1.6 Ma, the grain-size and magnetic susceptibility records document a significant increase in the discharge of south Saharan/Sahelian dust, possibly linked to increasing aridity.
Resumo:
Neogene climates and vegetation history of western Yunnan are reconstructed on the basis of known fossil plants using the Coexistence Approach (CA) and Leaf Margin Analysis (LMA). Four Neogene leaf floras from Tengchong, Jianchuan and Eryuan in southwestern China are analyzed by the CA, and the paleoclimatic data of one Miocene carpoflora from Longling and three Pliocene palynofloras from Longling, Yangyi and Eryuan are used for comparison. The Miocene vegetation of the whole of West Yunnan is subtropical evergreen broad-leaved forest, and a similar mean annual precipitation is inferred for Tengchong, Longling and Jianchuan. However, by the Late Pliocene a large difference in vegetation occurred between the two slopes of Gaoligong Mountain, western Yunnan. The region of Tengchong retained a subtropical evergreen broad-leaved forest vegetation, whereas in Yangyi and Eryuan a vertical vegetation zonation had developed, which consists, in ascending order, of humid evergreen broad-leaved, needle and broad-leaved mixed evergreen, and coniferous forests. Distinctively, the Late Pliocene vegetational patterns of West Yunnan were already very similar to those of the present, and the Pliocene mean annual precipitation in Tengchong was markedly higher than that of Yangyi and Eryuan. Considering that the overall vegetation of West Yunnan and the precipitation at Yangyi and Eryuan have undergone no distinct change since the Late Pliocene, we conclude that the Hengduan Mountains on the northern boundary of West Yunnan must have arisen after the Miocene and approached their highest elevation before the Late Pliocene. Furthermore, the fact of the eastern portion of the Tibetan Plateau underwent a slight uplift after the Late Pliocene is also supported.