250 resultados para Moreton de Chabrillan
Resumo:
Three megascopic and disseminated tephra layers (which we refer to as layers A, B, and C) occur in late Quaternary glaciomarine sediments deposited on the West Antarctic continental margin. The stratigraphical positions of the distal tephra layers in 28 of the 32 studied sediment cores suggest their deposition during latest Marine Isotopic Stage (MIS) 6 and MIS 5. One prominent tephra layer (layer B), which was deposited subsequent to the penultimate deglaciation (Termination II), is present in almost all of the cores. Geochemical analyses carried out on the glass shards of the layers reveal a uniform trachytic composition and indicate Marie Byrd Land (MBL), West Antarctica, as the common volcanic source. The geochemical composition of the marine tephra is compared to that of ash layers of similar age described from Mount Moulton and Mount Takahe in MBL and from ice cores drilled at Dome Fuji, Vostok and EPICA Dome C in East Antarctica. The three tephra layers in the marine sediments are chemically indistinguishable. Also five englacial ash layers from Mt. Moulton, which originated from highly explosive Plinian eruptions of the Mt. Berlin volcano in MBL between 142 ka and 92 ka ago, are chemically very similar, as are two tephra layers erupted from Mt. Takahe at ca. 102 ka and ca. 93 ka. Statistical analysis of the chemical composition of the glass shards indicates that the youngest tephra (layer A) in the marine cores matches the ash layer erupted from Mt. Berlin at 92 ka, which was previously correlated with tephra layers in the EPICA Dome C and the Dome Fuji ice cores. A tephra erupted from Mt. Berlin at 136 ka seems to correspond to a tephra layer deposited at 1733 m in the EPICA Dome C ice core. Additionally, the oldest tephra (layer C) in the marine sediments resembles an ash layer deposited at Vostok around 142 ka, but statistical evidence for the validity of this correlation is inconclusive. Although our results underscore the potential of tephrostratigraphy for correlating terrestrial and marine palaeoclimate archives, our study also reveals limitations of this technique, which may result in the miscorrelation of tephra. Such pitfalls comprise failure to recognise the occurrence of various tephra layers in marine sediment cores, 'swamping' of records with chemically indistinguishable tephra from a single volcanic source, and exclusive use of 'geochemical fingerprinting' for correlating ash layers.
Resumo:
Surveying habitats critical to the survival of grey nurse sharks in South-East Queensland has mapped critical habitats, gathered species inventories and developed protocols for ecological monitoring of critical habitats in southern Queensland. This information has assisted stakeholders with habitat definition and effective management. In 2002 members of UniDive applied successfully for World Wide Fund for Nature, Threatened Species Network funds to map the critical Grey Nurse Shark Habitats in south east Queensland. UniDive members used the funding to survey, from the boats of local dive operators, Wolf Rock at Double Island Point, Gotham, Cherub's Cave, Henderson's Rock and China Wall at North Moreton and Flat Rock at Point Look Out during 2002 and 2003. These sites are situated along the south east Queensland coast and are known to be key Grey Nurse Shark aggregation sites. During the project UniDive members were trained in mapping and survey techniques that include identification of fish, invertebrates and substrate types. Training was conducted by experts from the University of Queensland (Centre of Marine Studies, Biophysical Remote Sensing) and the Queensland Parks and Wildlife Service who are also UniDive members. The monitoring methods (see methods) are based upon results of the UniDive Coastcare project from 2002, the international established Reef Check program and research conducted by Biophysical Remote Sensing and the Centre of Marine Studies. Habitats were mapped using a combination of towed GPS photo transects, aerial photography, bathymetry surveys and expert knowledge. This data provides georeferenced information regarding the major features of each of Sites mapped including Wolf Rock
Resumo:
Precise relative sea level (RSL) data are important for inferring regional ice sheet histories, as well as helping to validate numerical models of ice sheet evolution and glacial isostatic adjustment. Here we develop a new RSL curve for Fildes Peninsula, South Shetland Islands (SSIs), a sub-Antarctic archipelago peripheral to the northern Antarctic Peninsula ice sheet, by integrating sedimentary evidence from isolation basins with geomorphological evidence from raised beaches. This combined approach yields not only a Holocene RSL curve, but also the spatial pattern of how RSL change varied across the archipelago. The curve shows a mid-Holocene RSL highstand on Fildes Peninsula at 15.5 m above mean sea level between 8000 and 7000 cal a BP. Subsequently RSL gradually fell as a consequence of isostatic uplift in response to regional deglaciation. We propose that isostatic uplift occurred at a non-steady rate, with a temporary pause in ice retreat ca. 7200 cal a BP, leading to a short-lived RSL rise of ~1 m and forming a second peak to the mid-Holocene highstand. Two independent approaches were taken to constrain the long-term tectonic uplift rate of the SSIs at 0.22-0.48 m/ka, placing the tectonic contribution to the reconstructed RSL highstand between 1.4 and 2.9 m. Finally, we make comparisons to predictions from three global sea level models.
Resumo:
The Southern Ocean is a region of the world's ocean which is fundamental to the generation of cold deep ocean water which drives the global therrno-haline circulation. Previous investigations of deep-sea sediments south of the Polar Front have been significantly constrained by the lack of a suitable correlation and dating technique. In this study, deep-sea sediment cores from the Bellingshausen, Scotia and Weddell seas have been investigated for the presence of tephra layers. The major oxide and trace element composition of glass shards have been used to correlate tephra isochrons over distances in excess of 600 km. The source volcanoes for individual tephra layers have been identified. Atmospheric transport distances greater than 1500 km for >32 pm shards are reported. One megascopic tephra is identified and correlated across 7 sediment drifts on the continental rise in the Bellingshausen Sea. Its occurrence in a sedimentary unit that has been biostratigraphically dated to delta 18O substage 5e identifies it as a key regional marker horizon for that stage. An unusual bimodal megascopic ash layer erupted from Deception Island, South Shetland Islands, has been correlated between 6 sediment cores which form a 600 km NE-SW transect from the central Scotia Sea to Jane Basin. This megascopic ash layer has been 14C dated at c. 10,670 years BP. It represents the last significant input of tephra into the Scotia Sea or Jane Basin from that volcano and forms an important early Holocene marker horizon for the region. Five disseminated tephras can be correlated to varying extents across the central Scotia Sea cores. Together with the megascopic tephra they form a tephrostratigraphic framework that will greatly aid palaeoclimatic, palaeoenvironrnental and palaeoceanographic investigations in the region.
Resumo:
Reliable dating of glaciomarine sediments deposited on the Antarctic shelf since the Last Glacial Maximum (LGM) is very challenging because of the general absence of calcareous (micro-) fossils and the recycling of fossil organic matter. As a consequence, radiocarbon (14C) ages of the acid-insoluble organic fraction (AIO) of the sediments bear uncertainties that are very difficult to quantify. In this paper we present the results of three different chronostratigraphic methods to date a sedimentary unit consisting of diatomaceous ooze and diatomaceous mud that was deposited following the last deglaciation at five core sites on the inner shelf in the western Amundsen Sea (West Antarctica). In three cores conventional 14C dating of the AIO in bulk sediment samples yielded age reversals down-core, but at all sites the AIO 14C ages obtained from diatomaceous ooze within the diatom-rich unit yielded similar uncorrected 14C ages ranging from 13,517±56 to 11,543±47 years before present (yr BP). Correction of these ages by subtracting the core-top ages, which are assumed to reflect present-day deposition (as indicated by 21044 Pb dating of the sediment surface at one core site), yielded ages between ca. 10,500 and 8,400 calibrated years before present (cal yr BP). Correction of the AIO ages of the diatomaceous ooze by only subtracting the marine reservoir effect (MRE) of 1,300 years indicated deposition of the diatom-rich sediments between 14,100 and 11,900 cal yr BP. Most of these ages are consistent with age constraints between 13.0 and 8.0 ka BP for the diatom-rich unit, which we obtained by correlating the relative palaeomagnetic intensity (RPI) records of three of the sediment cores with global and regional reference curves for palaeomagnetic intensity. As a third dating technique we applied conventional 53 radiocarbon dating of the AIO included in acid-cleaned diatom hard parts that were extracted from the diatomaceous ooze. This method yielded uncorrected 14C ages of only 5,111±38 and 5,106±38 yr BP, respectively. We reject these young ages, because they are likely to be overprinted by the adsorption of modern atmospheric carbon dioxide onto the surfaces of the extracted diatom hard parts prior to sample graphitisation and combustion for 14C dating. The deposition of the diatom-rich unit in the western Amundsen Sea suggests deglaciation of the inner shelf before ca. 13 ka BP. The deposition of diatomaceous oozes on other parts of the Antarctic shelf around the same time, however, seems to be coincidental rather than directly related.
Resumo:
The Amundsen Sea Embayment (ASE) drains approximately 35% of the West Antarctic Ice Sheet (WAIS) and is one of the most rapidly changing parts of the cryosphere. In order to predict future ice-sheet behaviour, modellers require long-term records of ice-sheet melting to constrain and build confidence in their simulations. Here, we present detailed marine geological and radiocarbon data along three palaeo-ice stream tributary troughs in the western ASE to establish vital information on the timing of deglaciation of the WAIS since the Last Glacial Maximum (LGM). We have undertaken multi-proxy analyses of the cores (core description, shear strength, x-radiographs, magnetic susceptibility, wet bulk density, total organic carbon/nitrogen, carbonate content and clay mineral analyses) in order to: (1) characterise the sedimentological facies and depositional environments; and (2) identify the horizon(s) in each core that would yield the most reliable age for deglaciation. In accordance with previous studies we identify three key facies, which offer the most reliable stratigraphies for dating deglaciation by recording the transition from a grounded ice sheet to open marine environments. These facies are: i) subglacial, ii) proximal grounding-line, and iii) seasonal open-marine. In addition, we incorporate ages from other facies (e.g., glaciomarine diamictons deposited at some distance from the grounding line, such as glaciogenic debris flows and iceberg rafted diamictons and turbates) into our deglacial model. In total, we have dated 78 samples (mainly the acid insoluble organic (AIO) fraction, but also calcareous foraminifers), which include 63 downcore and 15 surface samples. Through careful sample selection prior to dating, we have established a robust deglacial chronology for this sector of the WAIS. Our data show that deglaciation of the western ASE was probably underway as early as 22,351 calibrated years before present (cal 44 yr BP), reaching the mid-shelf by 13,837 cal yr BP and the inner shelf to within c.10-12 km of the present ice shelf front between 12,618 and 10,072 cal yr BP. The deglacial steps in the western ASE broadly coincide with the rapid rises in sea-level associated with global meltwater pulses 1a and 1b, although given the potential dating uncertainty, additional, more precise ages are required before these findings can be fully substantiated. Finally, we show that the rate of ice-sheet retreat increased across the deep (up to1,600 m) basins of the inner shelf, highlighting the importance of reverse slope and pinning points in accelerated phases of deglaciation.