513 resultados para Late early Oligocene


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tectonic changes that produced a deep Tasmanian Gateway between Australia and Antarctica are widely invoked as the major mechanism for Antarctic cryosphere growth and Antarctic Circumpolar Current (ACC) development during the Eocene/Oligocene (E/O) transition (34-33 Ma). Ocean Drilling Program (ODP) Leg 189 recovered near-continuous marine sedimentary records across the E/O transition interval at four sites around Tasmania. These records are largely barren of calcareous microfossils but contain a rich record of siliceous- and organic-walled marine microfossils. In this study we integrate micropaleontological, sedimentological, geochemical, and paleomagnetic data from Site 1172 (East Tasman Plateau) to identify four distinct phases (A-D) in the E/O Tasmanian Gateway deepening that are correlative among ODP Leg 189 sites. Phase A, prior to 35.5 Ma: minor initial deepening characterized by a shallow marine prodeltaic setting with initial condensation episodes. Phase B, 35.5-33.5 Ma: increased deepening marked by the onset of major glauconitic deposition and inception of energetic bottom-water currents. Phase C, 33.5-30.2 Ma: further deepening to bathyal depths, with episodic erosion by increasingly energetic bottom-water currents. Phase D, <30.2 Ma: establishment of stable, open-ocean, warm-temperate, oligotrophic settings characterized by siliceous-carbonate ooze deposition. Our combined evidence indicates that this early Oligocene Tasmanian Gateway deepening initially produced an eastward flow of relatively warm surface waters from the Australo-Antarctic Gulf into the southwestern Pacific Ocean. This "proto-Leeuwin" current fundamentally differs from previous regional reconstructions of eastward flowing cool water (e.g., a "proto-ACC") during the early Oligocene and thereby represents an important new constraint for reconstructing regional- to global-scale dynamics for this major global change event.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous studies of benthic foraminiferal isotopic composition have demonstrated that a latest Eocene-earliest Oligocene benthic foraminiferal d18O increase occurred in the Pacific, Southern and Atlantic Oceans (Douglas and Savin, 1973, doi:10.2973/dsdp.proc.17.120.1973; Savin et al., 1977, doi:10.1130/0016-7606(1975)86<1499:TMP>2.0.CO;2; Shackleton and Kennett, 1975, doi:10.2973/dsdp.proc.29.117.1975; Kennett and Shackleton, 1976, doi:10.1038/260513a0; Savin, 1977, doi:10.1146/annurev.ea.05.050177.001535; Keigwin, 1980, doi:10.1038/287722a0; Boersma and Shackleton, 1979, doi:10.2973/dsdp.proc.39.139.1977; Miller and Curry, 1982, doi:10.1038/296347a0; Miller et al., 1985, doi:10.2973/dsdp.proc.80.113.1985). A Middle Miocene d18O increase has been noted in the Pacific, Southern and South Atlantic Oceans (Douglas and Savin, 1973, doi:10.2973/dsdp.proc.17.120.1973; Savin et al., 1975, doi:10.1130/0016-7606(1975)86<1499:TMP>2.0.CO;2; Shackleton and Kennett, 1975, doi:10.2973/dsdp.proc.29.117.1975; Boersma and Shackleton, 1979, doi:10.2973/dsdp.proc.39.139.1977; Woodruff et al., 1981, doi:10.1126/science.212.4495.665; Savin et al., 1981, doi:10.1016/0377-8398(81)90031-1; and tentatively identified in the North Atlantic (Blanc et al., 1980, doi:10.1038/283553a0; Blanc and Duplessy, 1982, doi:10.1016/0198-0149(82)90033-4). Due to the incomplete nature of the North Atlantic stratigraphical record, however, the Oligocene to Middle Miocene isotopic record (Moore et al., 1978, Miller and Tucholke, 1983) of this ocean is poorly understood. In the modern ocean, the North Atlantic and its marginal seas has a critical role in abyssal circulation, influencing deep- and bottom-water hydrography as far away as the North Pacific (Reid and Lynn, 1971, doi:10.1016/0011-7471(71)90094-5; Worthington, 1976; Reid, 1971, doi:10.1016/0198-0149(79)90064-5). We now report oxygen isotope measurements on Oligocene to Middle Miocene (12-36 Myr BP) benthic foraminifera in the western North Atlantic which show two periods of enriched 18O values: early Oligocene and early Middle Miocene. These enriched intervals are interpreted as resulting, in part, from the build-up of continental ice sheets. The Oligocene to Middle Miocene d13C record shows three cycles of enrichment and depletion of large enough magnitude to be useful for time-Stratigraphical correlations. Within the biostratigraphical age resolution, d18O and d13C records correlate with records from other oceans, helping to establish a useful Tertiary isotopic stratigraphy. An Atlantic-Pacific d13C contrast of 0.3-0.9 per mil during the latest Oligocene to Middle Miocene (12-26 Myr BP) indicates North Atlantic deep and bottom-water production analogous to modern North Atlantic deep water (NADW).