258 resultados para ISOTOPIC EVIDENCE
Resumo:
Voluminous, subaerial magmatism resulted in the formation of extensive seaward-dipping reflector sequences (SDRS) along the Paleogene Southeast Greenland rifted margin. Drilling during Leg 163 recovered basalts from the SDRS at 66ºN (Site 988) and 63ºN (Sites 989 and 990). The basalt from Site 988 is light rare-earth-element (REE) enriched (La(n)/Yb(n) = 3.4), with epsilon-Nd(t=60) = 5.3, 87Sr/86Sr = 0.7034, and 206Pb/204Pb = 17.98. It is similar to tholeiites recovered from the Irminger Basin during Leg 49 and to light-REE-enriched tholeiites from Iceland. Drilling at Site 989, the innermost of the sites on the 63ºN transect, was proposed to extend recovery of the earliest part of the SDRS initiated during Leg 152. These basalts are, however, younger than those from Site 917 and are compositionally similar to basalts from the more seaward Sites 990 and 915. Many of the basalts from Sites 989 and 990 show evidence of contamination by continental crust (e.g., epsilon-Nd(t=60) extends down to -3.7, 206Pb/204Pb extends down to 15.1). We suggest that the contaminant is a mixture of Archean granulite and amphibolite and that the most contaminated basalts have assimilated ~5% of crust. Uncontaminated basalts are isotopically similar to basalts from Site 918, on the main body of the SDRS, and are light-REE depleted. Consistent with previous models of the development of this margin, we show that at the time of formation of the basalts from Sites 989 and 990 (1) melting was at relatively shallow levels in a fully-fledged rift zone; (2) fragments of continental crust were present in the lithosphere above the zones of melt generation; and (3) the sublithospheric mantle was dominated by a depleted Icelandic plume component.
Resumo:
It is demonstrated by K-Ar analyses that the age of reversely magnetized basalts, which immediately predate magnetic Anomaly 24B, is 53.5 ± 1.9 m.y. Samples from deep levels appear to be grossly contaminated by an extraneous argon component with a uniform argon-40/argon-36 ratio 440. This component is thought to have been derived from fluids circulating in the lava pile during burial. The age result corroborates the assignment previously made to Anomaly 24B by Hailwood et al. (1979) and Lowrie and Alvarez (1981). It additionally suggests that lava extrusion formed part of a much larger magmatic event, which affected wide areas of the North Atlantic margins around the Paleocene/Eocene boundary, and can therefore probably be considered a good estimate of the age of this boundary. Initial 143Nd/144Nd ratios lie in the very restricted range 0.512920 ± 19 to 0.513026 ± 24 and initial 8 7Sr/86Sr ratios from ca. 0.703 to ca. 0.705. Acid leaching reduces the latter range to 0.70264 ± 4 to 0.70384 ± 4, suggesting that the higher 87Sr/86Sr ratios resulted from interaction with seawater. The array of data for treated samples is closely conformable on a 143Nd/144Nd-87Sr/86Sr diagram with the main oceanic mantle array and with previously published fields for Atlantic Ocean basalts. No evidence for any continental crustal contamination has been found. This suggests, but does not prove, that continental crust played no part in the genesis of these rocks.
Resumo:
In order to characterize the provenance of lithogenic surface sediments from the Eastern Mediterranean Sea (EMS), residual (leached) fraction of 34 surface samples have been analysed for their 143Nd/144Nd and 87Sr/86Sr isotope ratios. The sample locations bracket all important entrances of riverine suspended matter into the EMS as well as all sub-basins of the EMS. The combined analyses of these two isotope ratios provide a precise characterization of the lithogenic fraction of surface sediments and record their dilution towards the central sub-basins. We reconstruct provenance and possible pathways of riverine dispersal and current redistribution, assuming more or less homogenous isotopic signatures and flux rates of the eolian fraction over the EMS. Lithogenic sediments entering the Ionian Sea from the Calabrian Arc and the Adriatic Sea are characterized by high 87Sr/86Sr isotope ratios and low epsilon-Nd(0) values (average 87Sr/86Sr=0.718005 and epsilon-Nd(0)=-11.06, n=5). Aegean Sea terrigenous sediments show an average ratio of 87Sr/86Sr=0.713089 (n=5) and values of epsilon-Nd(0)=-7.89 (n=5). The Aegean isotopic signature is traceable up to the southwest, south, and southeast of Crete. The sediment loads entering the EMS via the Aegean Sea are low and spread out mainly through the Strait of Casos (east of Crete). Surface sediments from the eastern Levantine Basin are marked by the highest epsilon-Nd(0) values (-3.3, n=6) and lowest 87Sr/86Sr isotope ratios (average 0.709541, n=6), reflecting the predominant input of the Nile sediment. The influence of the Nile sediment is traceable up to the NE-trending, eastern flank of the Mediterranean Ridge. The characterization of the modern riverine dispersal and eolian flux, based on isotope data, may serve as a tool to reconstruct climate-coupled variations of lithogenic sediment input into the EMS.
Resumo:
Paired analyses of Os isotope composition and concentration of bulk sediment and leachable Os in a metalliferous pelagic clay sequence from the North Pacific, ODP Site 886C, are used to reconstruct the marine Os isotope record and the particulate meteoritic Os flux between 65.5 and 78 Ma. Measured 187Os/188Os of bulk sediments ranges from approximately 0.64 to 0.32 and those of leach analyses are very similar to bulk analyses. Hydrogenous Os dominates the sedimentary Os inventory throughout most of the studied interval. As a result the measured 187Os/188Os of leachable Os approximates that of contemporaneous seawater. The ODP 886C record shows rising 187Os/188Os in the deepest portion of the core, with a local maximum of 0.66 close to 74 Ma. The 67-72 Ma portion of the record is characterized by nearly constant 187Os/188Os ratios close to 0.6. The structure of the marine Os isotope record from ODP 886C differs markedly from the seawater 87Sr/86Sr curve, which rises monotonically throughout the time interval studied here. Calculated particulate meteoritic Os fluxes are between 0.5 and 2 pg/cm**2/kyr throughout most of the studied interval. Two discrete intervals of the core (one of which is within Cretaceous Tertiary, boundary KTB interval) are characterized by higher fluxes of meteoritic Os. Excluding these two intervals, the average background flux of particulate meteoritic Os is roughly half of that estimated from analyses of Cenozoic marine sediments. These are the first Os isotope data to provide evidence of resolvable temporal variations in the background flux of particulate meteoritic material to the Earth.
Resumo:
The origin of three Red Sea submarine brine pools was investigated by analysis of the S and O isotope ratios of dissolved sulfate and Sr isotope ratios of dissolved Sr in the brines. Sulfur and O isotope ratios of sulfate and Sr isotope ratios of evaporitic source rocks for the brines were measured for comparison. The S, O and Sr isotope ratios of evaporites recovered from DSDP site 227 are consistent with an upper Miocene evaporites age. The Valdivia Deep brine formed by karstic dissolution of Miocene evaporites by overlying seawater and shows no signs of hydrothermal input. The Suakin Deep brines are derived from, or have isotopically exchanged with Miocene or older evaporites. There has been only minor dilution of the brine by overlying seawater. Strontium isotope ratios of Suakin brine may indicate addition of a minor (15%) amount of volcanic Sr to the brine, but there is no evidence of high temperature brine-rock interaction. The sulfate in the Atlantis II brine was apparently derived from seawater. The O isotope ratio of sulfate in the present Atlantis II brine could reflect isotopic exchange between seawater sulfate and the brine at approximately 255°C. Approximately 30% of the Sr in the Atlantis II brine is derived from the underlying basalt, probably by hydrothermal leaching. Atlantis II brine is the only known example from the Red Sea which has a significant high-temperature hydrothermal history.
Resumo:
Ocean Drilling Program sampling of the distal passive margin of South China at Sites 1147 and 1148 has yielded clay-rich hemipelagic sediments dating to 32 Ma (Oligocene), just prior to the onset of seafloor spreading in the South China Sea. The location of the drill sites offshore the Pearl River suggests that this river, or its predecessor, may have been the source of the sediment in the basin, which accounts for only not, vert, similar ~1.8% of the total Neogene sediment in the Asian marginal seas. A mean erosion depth of not, vert, similar ~1 km over the current Pearl River drainage basin is sufficient to account for the sediment volume on the margin. Two-dimensional backstripping of across-margin seismic profiles shows that sedimentation rates peaked during the middle Miocene (11-16 Ma) and the Pleistocene (since 1.8 Ma). Nd isotopic analysis of clays yielded epsilonNd values of -7.7 to -11.0, consistent with the South China Block being the major source of sediment. More positive epsilonNd values during and shortly after rifting compared to later sedimentation reflect preferential erosion at that time of more juvenile continental arc rocks exposed along the margin. As the drainage basin developed and erosion shifted from within the rift to the continental interior epsilonNd values became more negative. A rapid change in the clay mineralogy from smectite-dominated to illite dominated at not, vert, similar 15.5 Ma, synchronous with middle Miocene rapid sedimentation, mostly reflects a change to a wetter, more erosive climate. Evidence that the elevation of the Tibetan Plateau and erosion in the western Himalaya both peaked close to this time supports the suggestion that the Asian monsoon became much more intense at that time, much earlier than the 8.5 Ma age commonly accepted.
Resumo:
We are writing to comment on the work of Tamburini et al. (2003, doi:10.1029/2000PA000616). During the course of subsequent discussions between the authors and ourselves, it has become clear that the published sedimentary nitrogen isotopic values for Ocean Drilling Program (ODP) Site 724 are in error. Our reanalysis of sediment samples from the same intervals has revealed a significant offset from the original d15N data, requiring a revised assessment of their initial interpretation. The purposes of this comment are to (1) address the origin of these errors; (2) outline a protocol for future validation of nitrogen isotopic analyses; and (3) provide revised interpretations of the sedimentary d15N data in terms of the regional relative contributions of denitrification and nitrogen fixation and mean state of the southwest monsoon. (2) Nitrogen isotopic values measured on late Quaternary sediments at Arabian Sea ODP Site 724 by Tamburini et al. (2003, doi:10.1029/2000PA000616) are inexplicably different from a number of published records of d15N from very nearby on the Oman margin (Altabet et al., 1995, doi:10.1038/373506a0; 1999, doi:10.1029/1999PA900035; 2002, doi:10.1038/415159a; Higginson et al., 2004, doi:10.1016/j.gca.2004.03.015) and elsewhere in the Arabian Sea (Reichart et al., 1998, doi:10.1029/98PA02203). These data were generated using similar instrumentation (elemental analyzer coupled with an isotope ratio mass spectrometer) and analytical methodology to those already published. Concerned by this clear discrepancy, we analyzed aliquots of sediment from the same depth intervals for nitrogen abundance and bulk sedimentary nitrogen isotopes. We have been unable to duplicate the values published by Tamburini et al. (2003, doi:10.1029/2000PA000616 ), even after analysis of multiple replicates and due consideration of natural sediment heterogeneities and postrecovery sample storage.
Resumo:
Neodymium (Nd) isotopes were measured on 181 samples of fossil fish teeth recovered from Oligocene to Miocene sections at Ocean Drilling Program Site 1090 (3700 m water depth) on Agulhas Ridge in the Atlantic sector of the Southern Ocean. A long-term decreasing trend toward less radiogenic Nd isotope compositions dominates the record. This trend is interrupted by shifts toward more radiogenic compositions near the early/late Oligocene boundary and the Oligocene/Miocene boundary. Overall, epsilon-Nd values at Agulhas Ridge are more radiogenic than at other Atlantic locations, and are similar to those at Indian Ocean locations. The pattern of variability is remarkably similar to Nd isotope results from Walvis Ridge (South Atlantic) and Ninetyeast Ridge (Indian Ocean). In contrast, Agulhas Ridge and Maud Rise Nd isotope records do not show similar patterns over this interval. Results from this study indicate that deep water in the Atlantic flowed predominantly from north to south during the Oligocene and Miocene, and that export of Northern Component Water (NCW) to the Southern Ocean increased in the late Oligocene. There is also evidence for efficient exchange of deep waters between the Atlantic sector of the Southern Ocean and the Indian Ocean, although the direction of deep water flow is not entirely clear from these data. The shifts to more radiogenic Nd isotopic compositions most likely represent increases in the flux of Pacific waters through Drake Passage, and the timing of these events reflect development of a mature Antarctic Circumpolar Current (ACC). The relative timing of increased NCW export and ACC maturation support hypotheses that link deep water formation in the North Atlantic to the opening of Drake Passage.
Resumo:
Stable isotope analyses were performed on ontogenetic dissections of four taxa of low latitude Late Cretaceous planktonic foraminifera from DSDP Hole 390A. The species studied include Planoglobulina acervulinoides, Planoglobulina multicamerata, Pseudoguembelina palpebra, and Racemiguembelina fructicosa. Delta18O and delta13C data indicate a deeper surface water paleohabitat for P. multicamerata than the other three taxa, and ontogenetic increases in delta18O values suggest all these taxa underwent vertical migrations from shallow to deeper surface waters. Changes in delta13C values through ontogeny include sharp increases in delta13C composition in the juvenile size intervals, a decrease in the rate of delta13C change through intermediate size intervals, and reversals to a negative trend in delta13C values in terminal size intervals. The intermediate and terminal growth changes in delta13C signals are similar to ontogenetic trends observed in some extant and Paleogene planktonic foraminifera and may result from decreasing metabolic rates through ontogeny or endosymbiont digestion prior to gametogenesis. The ontogenetic delta13C increases of 1.04?, 0.76?, 0.83?, and 0.77? in R. fructicosa, P. palpebra, P. acervulinoides, and P. multicamerata, respectively, may indicate the presence of photosymbionts. However, our review and critique of the current literature discussing photosymbiont effects on stable isotope values in living and fossil planktonic foraminifera suggests that conclusions regarding the presence of photosymbionts in fossil taxa may be more equivocal than previously thought.