404 resultados para Furniture, Philippine.
Resumo:
Earth's largest reactive carbon pool, marine sedimentary organic matter, becomes increasingly recalcitrant during burial, making it almost inaccessible as a substrate for microorganisms, and thereby limiting metabolic activity in the deep biosphere. Because elevated temperature acting over geological time leads to the massive thermal breakdown of the organic matter into volatiles, including petroleum, the question arises whether microorganisms can directly utilize these maturation products as a substrate. While migrated thermogenic fluids are known to sustain microbial consortia in shallow sediments, an in situ coupling of abiotic generation and microbial utilization has not been demonstrated. Here we show, using a combination of basin modelling, kinetic modelling, geomicrobiology and biogeochemistry, that microorganisms inhabit the active generation zone in the Nankai Trough, offshore Japan. Three sites from ODP Leg 190 have been evaluated, namely 1173, 1174 and 1177, drilled in nearly undeformed Quaternary and Tertiary sedimentary sequences seaward of the Nankai Trough itself. Paleotemperatures were reconstructed based on subsidence profiles, compaction modelling, present-day heat flow, downhole temperature measurements and organic maturity parameters. Today's heat flow distribution can be considered mainly conductive, and is extremely high in places, reaching 180 mW/m**2. The kinetic parameters describing total hydrocarbon generation, determined by laboratory pyrolysis experiments, were utilized by the model in order to predict the timing of generation in time and space. The model predicts that the onset of present day generation lies between 300 and 500 m below sea floor (5100-5300 m below mean sea level), depending on well location. In the case of Site 1174, 5-10% conversion has taken place by a present day temperature of ca. 85 °C. Predictions were largely validated by on-site hydrocarbon gas measurements. Viable organisms in the same depth range have been proven using 14C-radiolabelled substrates for methanogenesis, bacterial cell counts and intact phospholipids. Altogether, these results point to an overlap of abiotic thermal degradation reactions going on in the same part of the sedimentary column as where a deep biosphere exists. The organic matter preserved in Nankai Trough sediments is of the type that generates putative feedstocks for microbial activity, namely oxygenated compounds and hydrocarbons. Furthermore, the rates of thermal degradation calculated from the kinetic model closely resemble rates of respiration and electron donor consumption independently measured in other deep biosphere environments. We deduce that abiotically driven degradation reactions have provided substrates for microbial activity in deep sediments at this convergent continental margin.
Resumo:
At the Western Nankai Trough subduction zone at ODP Site 808, chemical concentration and isotopic ratio depth profiles of D, O, Sr, and He do not support fluid flow along the décollement nor at the frontal thrust. They do, however, support continuous or periodic lateral fluid flow: (1) at the base of the Shikoku Basin volcanic-rich sediment member, situated ~140 m above the décollement, and particularly (2) below the décollement. The latter must have been rather vigorous, as it was capable of transporting clay minerals over great distances. The fluid at ~140 m above the décollement is characterized by lower than seawater concentrations of Cl- (>=18% seawater dilution). It is 18O-rich and D-poor and has a non-radiogenic, oceanic, or volcanic arc Sr isotopic signature. It originates from "volcanic" clay diagenesis. The fluid below the décollement has also less Cl- than seawater (>20% dilution), is more enriched in 18O and depleted in D than fluid, but its Sr isotopic signature is radiogenic, continentalterrigenous. The source of this fluid is located arcward, is deep-seated, where illitization of the subducted clay minerals, a mixture of terrigenous and volcanic clays, occurs. The 3He/4He ratio below the décollement points to an ~25% mantle contribution. The nature of the physical and chemical discontinuities across the décollement suggests it is overpressured and is forming a leaky "dynamic seal" for fluid flow. In contrast with the situation at Barbados and Peru, where the major tectonic features are mineralized, here, although the complex is extremely fractured and faulted, mineralized macroscopic veins, fractures, and faults are absent. Instead, mineralized microstructures are widespread, indicating a diffuse mode of dewatering.