254 resultados para Emoff, Ron: Recollecting from the past
Resumo:
The sensitivity to temperature of Mg/Ca ratios in the shallow-infaunal benthic foraminifera Uvigerina spp. has been assessed. Core-top calibrations over ~1-20 °C show a range in sensitivity of 0.065-0.084 mmol/mol/°C but few data are available spanning the temperature range anticipated in deep-sea records over glacial-interglacial cycles. In contrast to epibenthic foraminiferal species, carbonate ion saturation appears not to affect Mg/Ca significantly. A method based on estimating the ratio of the temperature sensitivity of foraminiferal Mg/Ca to that of d18Ocalcite shows that sensitivity for Mg/Ca at the high end of the observed core-top range (~0.1 mmol/mol/°C) is required for consistency with LGM-Holocene differences in each property as constrained by independent proxy data. This is supported by a Mg/Ca record for Uvigerina spp. generated for the Southern Ocean over the past 440,000 years from Ocean Drilling Program Site 1123 (Chatham Rise, New Zealand). The record shows variability that correlates with climate oscillations. The LGM deep ocean temperature derived from the Mg/Ca record is -1.1 ± 0.3 °C. Transformation to temperature allows estimates to be made of changes in bottom water temperature and seawater d18O and comparison made with literature records. Analysis reveals a ~2.5-kyr lead in the record of temperature over calcite d18O and a longer lead over seawater d18O. This is a reflection of larger phase offsets at eccentricity periods; phase offsets at tilt and precession are within error zero.
Resumo:
We demonstrate that changes in the behavior of the Mediterranean Outflow Water (MOW) prior to and through the last deglaciation played an important role in promoting Meridional Overturning Circulation (MOC). Estimation of past MOW salt and heat fluxes indicates that they gradually increased through the last deglaciation. Between 17.5 and 14.6 thousand years ago (ka B.P., where B.P. references year 1950), net evaporation from the Mediterranean exported sufficient fresh water from the North Atlantic catchment to cause an average salinity increase of 0.5 psu throughout the upper 2000 m of the entire North Atlantic to the north of 25°N. Combined with rapid intensification and shoaling of the MOW plume, which we identify around 15-14.5 ka B.P., this deglacial MOW-related salt accumulation preconditioned the North Atlantic for abrupt resumption of the MOC at 14.6 ka B.P.
Resumo:
Variations in global ice volume and temperature over the Cenozoic era have been investigated with a set of one-dimensional (1-D) ice-sheet models. Simulations include three ice sheets representing glaciation in the Northern Hemisphere, i.e. in Eurasia, North America and Greenland, and two separate ice sheets for Antarctic glaciation. The continental mean Northern Hemisphere surface-air temperature has been derived through an inverse procedure from observed benthic d18O records. These data have yielded a mutually consistent and continuous record of temperature, global ice volume and benthic d18O over the past 35 Ma. The simple 1-D model shows good agreement with a comprehensive 3-D ice-sheet model for the past 3 Ma. On average, differences are only 1.0°C for temperature and 6.2 m for sea level. Most notably, over the 35 Ma period, the reconstructed ice volume-temperature sensitivity shows a transition from a climate controlled by Southern Hemisphere ice sheets to one controlled by Northern Hemisphere ice sheets. Although the transient behaviour is important, equilibrium experiments show that the relationship between temperature and sea level is linear and symmetric, providing limited evidence for hysteresis. Furthermore, the results show a good comparison with other simulations of Antarctic ice volume and observed sea level.
Resumo:
During the past six years organic geochemical, micropaleontological, and sedimentological investigations were carried out within the framework of the multidisciplinary bilateral German-Russian research project ''System Laptev Sea'' and detailed biological investigations within the project ''German-Russian Investigations of the Marginal Seas of the Eurasian Arctic'', In order to understand the Laptev Sea ecosystem and to obtain information about sources and fate of organic carbon, the distribution of phyto- and zooplankton, diatoms, chlorophyll a benthic macrofauna, palynomorphs, grain size, total organic carbon, d13Corg and biomarkers (n-alkanes, fatty acids) were determined. In general, the influence of the major rivers draining into the Laptev Sea, is reflected in the water column as well as in the surface sediments. In both habitats three ecological provinces can be distinguished, i.e., the southeastern Laptev Sea, the central Laptev Sea, and the northern Laptev Sea. Additionally, clear differences between the western and the eastern Laptev Sea occur. The comparison of the different data sets of the water column and the surface sediments provide information about organic carbon sources and pathways in the Laptev Sea shelf and continental slope area.
Resumo:
Diatom assemblages from 228 core-top samples were investigated to determine the modern geographic distributions of 10 major open ocean species or species groups in the Atlantic and Indian sectors of the Southern Ocean. Our study gives a more comprehensive view of the relationships between diatom distribution and environmental pressures than previous studies, as our modern database covers a much wider area, and additionally highlights the relationships with sea ice cover and concentration. The 10 species or species categories can mainly be lumped into three groupings. First, a cool open ocean grouping composed of Rhizosolenia pointed group, Thalassiosira gracilis group and Trichotoxon reinboldii with maximum relative abundances occurring within the maximum winter sea-ice edge. Second, a pelagic open ocean grouping composed of Fragilariopsis kerguelensis, Thalassiosira lentiginosa, Thalassiosira oliverana and Thalassiothrix spp. group with maximum occurrences at the Antarctic Polar Front. Third, a warm open ocean grouping with maximum abundances observed within the Polar Front Zone and composed of the Rhizosolenia rounded group, the Thalassionema nitzschioides var. nitzschioides group and the Thalassionema nitzschioides var. lanceolata. Comparisons of the abovementioned 10 species or species groups with modern February sea-surface temperatures and sea-ice duration and concentration reveal species-specific sedimentary distributions regulated both by sea-surface temperatures and sea ice conditions that support the use of diatom remains to reconstruct past variations of these environmental parameters via qualitative and transfer function approaches.
Resumo:
This paper gives a modern circumscription of Tropical/Subtropical diatoms regarding their relationship with sea-surface temperatures (SST) and sea ice cover. Diatoms from 228 core-top sediment samples collected from the Southern Ocean were studied to determine the geographic distribution of eight major diatom species/taxa preserved in surface sediments generally located north of the Subantarctic Front. The comparison of the relative contribution of diatom species with modern February SST and sea-ice cover reveals species-specific sedimentary distributions regulated both by water temperatures and sea ice conditions. Although selective preservation might have played some role, their presence in surface and downcore sediments from the Southern Ocean are reliable indicators of high SST and poleward transport of waters from the Tropical/Subtropical Atlantic. Our work supports the use of diatom remains to reconstruct past variations of these environmental parameters via qualitative and transfer function approaches.
Resumo:
Individual planktonic microfossil species, or assemblage groups of different species, are often used to, qualitatively and/or quantitatively, reconstruct past (sub)surface-water conditions of the world's oceans and seas. Until now, little information has been available on the surface sediment distribution patterns and paleoenvironmental reconstruction potential of coccolith, calcareous dinoflagellate cyst and organic-walled dinoflagellate cyst assemblages of the South and equatorial Atlantic, especially at the species level. This paper (i) summarizes the distributions of these three phytoplanktonic microfossil groups in numerous Atlantic surface sediments from 20°N-50°S and 30°E-65°W and determines their relationship with the physicochemical and trophic conditions of the overlying (sub)surface-waters, and (ii) determines the synecology of the three phytoplankton groups by carrying out statistical analyses (i.e. detrended and canonical correspondence analyses) on all groups simultaneously. Ecological relationships are additionally strengthened by statistically comparing the distribution patterns of the phytoplankton groups with those of planktonic foraminifera (Pflaumann et al. 1996; Niebler et al. 1998), as the ecological preferences of the latter are much better known. Many of the analyzed phytoplanktonic microfossil species or groups of species in the surface sediments do show restricted distributions which primarily reflect the environmental conditions of the upper water masses above them (e.g. sea-surface temperature, productivity, stratification). The acquired 'reference' data sets are large and diverse enough to allow future development of transfer functions for the reconstruction of past surface-water conditions, and show that there is still an enormous paleoenvironmental reconstruction potential concealed in many fossil coccolith and dinoflagellate cyst assemblages.
Resumo:
Time series of terrigenous source elements (Al, K, Ti, Zr) from core GeoB4901-8 recovered from the deep-sea fan of the Niger River record variations in riverine sediment discharge over the past 245,000 yr. Although the flux rates of all the elements depend on physical erosion, which is mainly controlled by the extent of vegetation coverage in central Africa, element/Al ratios reflect conditions for chemical weathering in the river basin. Maximum sediment input to the ocean occurs during cold and arid periods, when precipitation intensity and associated freshwater runoff are reduced. High carbonate contents during the same periods indicate that the sediment supply has a positive effect on river-induced marine productivity. In general, variations in the terrestrial signals contain a strong precessional component in tune with changes in low-latitude solar radiation. However, the terrestrial signal lags the insolation signal by several thousand years. K/Al, Ti/Al, and Zr/Al records reveal that African monsoonal precipitation depends on high-latitude forcing. We attribute the shift between insolation cycle and river discharge to the frequently reported nonlinear response of African climate to primary orbital configurations, which may be caused by a complex interaction of the secondary control parameters, such as surface albedo and/or thermohaline circulation.
Resumo:
This Monograph on Deep-Sea Deposits forms the penultimate volume of the Official Reports on the Scientific Results of the Challenger Expedition. The work connected with the examination and study of the samples of Deep-Sea Deposits, and the preparation of this Report for the press have occupied a very large part of the author's time and attention for nearly twenty years, and his colleague, Professor A. F. Renard, has also given much of his time to the same studies during the past fourteen years. They hope that the completed work may be regarded as an interesting contribution to our knowledge of the ocean, and prove useful to a large number of scientific men, as it is the first attempt to deal systematically with Deep-Sea Deposits, and the Geology of the sea-bed throughout the whole extent of the ocean. There are three Appendices to the volume, the first containing an explanation of the Charts and Diagrams; the second a Report on the Analysis of Manganese Nodules, by John Gibson, Ph.D., of Edinburgh University; and the third Analyses of Deposits and materials from the Deposits by various analysts.
Resumo:
We present a Younger Dryas-Holocene record of the hydrogen isotopic composition of sedimentary plant waxes (dDwax) from the southern European Alps (Lake Ghirla, N-Italy) to investigate its sensitivity to climatic forcing variations in this mid-latitude region (45°N). A modern altitudinal transect of dD values of river water and leaf waxes in the Lake Ghirla catchment is used to test present-day climate sensitivity of dDwax. While we find that altitudinal effects on dDwax are minor at our study site, temperature, precipitation amount, and evapotranspiration all appear to influence dDwax to varying extents. In the lake-sediment record, dDwax values vary between -134 and -180 per mil over the past 13 kyr. The long-term Holocene pattern of dDwax parallels the trend of decreasing temperature and is thus likely forced by the decline of northern hemisphere summer insolation. Shorter-term fluctuations, in contrast, may reflect both temperature and moisture-source changes. During the cool Younger Dryas and Little Ice Age (LIA) periods we observe unexpectedly high dDwax values relative to those before and after. We suggest that a change towards a more D-enriched moisture source is required during these intervals. In fact, a shift from northern N-Atlantic to southern N-Atlantic/western Mediterranean Sea sources would be consistent with a southward migration of the Westerlies with climate cooling. Prominent dDwax fluctuations in the early and middle Holocene are negative and potentially associated with temperature declines. In the late Holocene (<4 kyr BP), excursions are partly positive (as for the LIA) suggesting a stronger influence of moisture-source changes on dDwax variation. In addition to isotopic fractionations of the hydrological cycle, changes in vegetation composition, in the length of the growing season, and in snowfall amount provide additional potential sources of variability, although we cannot yet quantitatively assess these in the paleo-record. We conclude that while our dDwax record from the Alps does contain climatic information, it is a complicated record that would require additional constraints to be robustly interpreted. This also has important implications for other water-isotope-based proxy records of precipitation and hydro-climate from this region, such as cave speleothems.
Resumo:
Mineralogical, geochemical, magnetic, and siliciclastic grain-size signatures of 34 surface sediment samples from the Mackenzie-Beaufort Sea Slope and Amundsen Gulf were studied in order to better constrain the redox status, detrital particle provenance, and sediment dynamics in the western Canadian Arctic. Redox-sensitive elements (Mn, Fe, V, Cr, Zn) indicate that modern sedimentary deposition within the Mackenzie-Beaufort Sea Slope and Amundsen Gulf took place under oxic bottom-water conditions, with more turbulent mixing conditions and thus a well-oxygenated water column prevailing within the Amundsen Gulf. The analytical data obtained, combined with multivariate statistical (notably, principal component and fuzzy c-means clustering analyses) and spatial analyses, allowed the division of the study area into four provinces with distinct sedimentary compositions: (1) the Mackenzie Trough-Canadian Beaufort Shelf with high phyllosilicate-Fe oxide-magnetite and Al-K-Ti-Fe-Cr-V-Zn-P contents; (2) Southwestern Banks Island, characterized by high dolomite-K-feldspar and Ca-Mg-LOI contents; (3) the Central Amundsen Gulf, a transitional zone typified by intermediate phyllosilicate-magnetite-K-feldspar-dolomite and Al-K-Ti-Fe-Mn-V-Zn-Sr-Ca-Mg-LOI contents; and (4) mud volcanoes on the Canadian Beaufort Shelf distinguished by poorly sorted coarse-silt with high quartz-plagioclase-authigenic carbonate and Si-Zr contents, as well as high magnetic susceptibility. Our results also confirm that the present-day sedimentary dynamics on the Canadian Beaufort Shelf is mainly controlled by sediment supply from the Mackenzie River. Overall, these insights provide a basis for future studies using mineralogical, geochemical, and magnetic signatures of Canadian Arctic sediments in order to reconstruct past variations in sediment inputs and transport pathways related to late Quaternary climate and oceanographic changes.
Resumo:
Focussing on heavy-mineral associations in the Laptev-Sea continental margin area and the eastern Arctic Ocean, 129 surface sediment samples, two short and four long gravity cores have been studied. By means of the accessory components, heavy-mineral associations of surface sediment samples from the Laptev-See continental slope allowed the distinction into two different mineralogical provinces, each influenced by fluvial input of the Siberian river Systems. Transport pathways via sea ice from the shallow shelf areas into the Arctic Ocean up to the final ablation areas of the Fram Strait can be reconstructed by heavy-mineral data of surface sediments from the central Arctic Ocean. The shallow shelf of the Laptev Sea seems to be the most important source area for terrigenous material, as indicated by the abundant occurence of amphiboles and clinopyroxenes. Underneath the mixing Zone of the two dominating surface circulation Systems, the Beaufort- Gyre and Transpolar-Drift system, the imprint of the Amerasian shelf regions up to the Fram Strait is detectable because of a characteristical heavy-mineral association dominated by detrital carbonate and opaque minerals. Based On heavy-mineral characteristics of the potential circum-Arctic source areas, sea-ice drift, origin and distribution of ice-rafted material can be reconstructed during the past climatic cycles. Different factors controlling the transport of terrigenous material into the Arctic Ocean. The entrainment of particulate matter is triggered by the sea level, which flooded during highs and lows different regions resulting in the incorporation of sediment from different source areas into the sea ice. Additionally, the fluvial input even at low stands of sea level is responsible for the delivery of material of distinct sources for entrainment into the sea ice. Glacials and interglacials of climate cycles of the last 780 000 years left a characteristical signal in the central Arctic Ocean sediments caused by the ice- rafted material from different sources in the circum-Arctic regions and its change through time. Changes in the heavy-mineral association from an amphibole-dominated into a garnet-epidote-assemblage can be related to climate-related changes in source areas and directions of geostrophic winds, the dominating drive of the sea-ice drift. During Marine Isotope Stage (MIS) 6, the central Arctic Ocean is marked by an heavy-mineral signal, which occurs in recent sediments of the eastern Kara Sea. Its characteristics are high amounts of epidote, garnet and apatite. On the other hand, during the Same time interval a continuous record of Laptev Sea sediments is documented with high contents of amphiboles on the Lomonosov Ridge near the Laptev Sea continental slope. A nearly similar Pattern was detected in MIS 5 and 4. Small-scale glaciations in the Putorana-mountains and the Anabar-shield may have caused changes in the drainage area of the rivers and therefore a change in fluvial input. During MIS 3, the heavy-mineral association of central Arctic sediments show similar patterns than the Holocene mineral assemblage which consists of amphiboles, ortho- and clinopyroxenes with a Laptev Sea source. These minerals are indicating a stable Transpolar-Drift system similar to recent conditions. An extended influence of the Beaufort Gyre is only recognized, when sediment material from the Amerasian shelf areas reached the core location PS2757-718 during Termination Ib. Based On heavy-mineral data from Laptev-Sea continental slope Core PS2458-4 the paleo-sea-ice drift in the Laptev Sea during 14.000 years was reconstructed. During Holocene sea-level rise, the bathymetrically deeper parts of the Western shelf were flooded first. At the beginning of the Atlantic stage, nearly the entire shelf was marine influenced by fully marine conditions and the recent surface circulation was established.
Resumo:
The Arctic is responding more rapidly to global warming than most other areas on our planet. Northward flowing Atlantic Water is the major means of heat advection towards the Arctic and strongly affects the sea ice distribution. Records of its natural variability are critical for the understanding of feedback mechanisms and the future of the Arctic climate system, but continuous historical records reach back only ~150 years. Here, we present a multidecadal scale record of ocean temperature variations during the last 2000 years, derived from marine sediments off Western Svalbard (79°N). We find that early-21st-century temperatures of Atlantic Water entering the Arctic Ocean are unprecedented over the past 2000 years and are presumably linked to the Arctic Amplification of global warming.
Resumo:
Pelagic clay of the east-central Pacific province is shown to be a mixture of three primary detrital components, reflecting continental source areas in Asia, North America, and Central and South America. Relative contributions from each source area are a function of geography, and this distribution appears to have remained constant over the past five million years, despite changing flux rates. A Q-mode factor analysis of downcore records for Pb, Sr, and Nd isotopes identified three factors that account for 98% of the total variance. These factors represent the radiogenic isotopic signatures of 1) late Cenozoic Asian dust, which dominates in the central North Pacific; 2) North American continental hemipelagic/eolian sources, restricted mainly to the easternmost North Pacific at ~30 °N latitude; and 3) Central and South American sources, restricted to areas east of ~100 °W longitude. South of the Intertropical Convergence Zone (~6 °N), the Asian dust signature diminishes abruptly. We conclude that late Cenozoic Asian dust sources can be isotopically differentiated downcore from both North American and South and Central American sources in the eastcentral Pacific. This approach has a utility for identifying changes in long-term Cenozoic atmospheric circulation patterns.