285 resultados para Carbon-nutrient balance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon uptake and partitioning of two globally abundant diatom species, Thalassiosira weissflogii and Dactyliosolen fragilissimus, was investigated in batch culture experiments under four conditions: ambient (15°C, 400 µatm), high CO2 (15°C, 1000 µatm), high temperature (20°C, 400 µatm), and combined (20°C, 1000 µatm). The experiments were run from exponential growth into the stationary phase (six days after nitrogen depletion), allowing us to track biogeochemical dynamics analogous to bloom situations in the ocean. Elevated CO2 had a fertilizing effect and enhanced uptake of dissolved inorganic carbon (DIC) by about 8% for T. weissflogii and by up to 39% for D. fragilissimus. This was also reflected in higher cell numbers, build-up of particulate and dissolved organic matter, and transparent exopolymer particles. The CO2 effects were most prominent in the stationary phase when nitrogen was depleted and CO2(aq) concentrations were low. This indicates that diatoms in the high CO2 treatments could take up more DIC until CO2 concentrations in seawater became so low that carbon limitation occurs. These results suggest that, contrary to common assumptions, diatoms could be highly sensitive to ongoing changes in oceanic carbonate chemistry, particularly under nutrient limitation. Warming from 15 to 20 °C had a stimulating effect on one species but acted as a stressor on the other species, highlighting the importance of species-specific physiological optima and temperature ranges in the response to ocean warming. Overall, these sensitivities to CO2 and temperature could have profound impacts on diatoms blooms and the biological pump.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arctic Ocean is warming at two to three times the global rate and is perceived to be a bellwether for ocean acidification. Increased CO2 concentrations are expected to have a fertilization effect on marine autotrophs, and higher temperatures should lead to increased rates of planktonic primary production. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range of 145-2,099?µatm; however, the greatest effects are observed only at lower temperatures and are constrained by nutrient and light availability to the spring period. The temperature dependence of CO2-enhanced primary production has significant implications for metabolic balance in a warmer, CO2-enriched Arctic Ocean in the future. In particular, it indicates that a twofold increase in primary production during the spring is likely in the Arctic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the naturally iron-fertilized surface waters of the northern Kerguelen Plateau region, the early spring diatom community composition and contribution to plankton carbon biomass were investigated and compared with the High Nutrient Low Chlorophyll (HNLC) surrounding waters (October-November 2011, KEOPS 2). The large iron-induced blooms were dominated by small diatom species belonging to the genera Chaetoceros (Hyalochaete) and Thalassiosira, which rapidly responded to the onset of favorable light-conditions in the meander of the Polar Front. In comparison, the iron-limited HNLC area was typically characterized by autotrophic nanoeukaryote-dominated communities and by larger and more heavily silicified diatom species (e.g. Fragilariopsis spp.). Our results support the hypothesis that diatoms are valuable vectors of carbon export to depth in naturally iron-fertilized systems of the Southern Ocean. Comparison with the diatom assemblage composition of a sediment trap deployed in the iron-fertilized area suggests that the dominant Chaetoceros (Hyalochaete) cells were less efficiently exported than the less abundant yet heavily silicified cells of Thalassionema nitzschioides and Fragilariopsis kerguelensis. Our observations emphasize the strong influence of species-specific diatom cell properties combined with trophic interactions on matter export efficiency, and illustrate the tight link between the specific composition of phytoplankton communities and the biogeochemical properties characterizing the study area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean Acidification (OA) has been shown to affect photosynthesis and calcification in the coccolithophore Emiliania huxleyi, a cosmopolitan calcifier that significantly contributes to the regulation of the biological carbon pumps. Its non-calcifying, haploid life-cycle stage was found to be relatively unaffected by OA with respect to biomass production. Deeper insights into physiological key processes and their dependence on environmental factors are lacking, but are required to understand and possibly estimate the dynamics of carbon cycling in present and future oceans. Therefore, calcifying diploid and non-calcifying haploid cells were acclimated to present and future CO2 partial pressures (pCO2; 38.5 Pa vs. 101.3 Pa CO2) under low and high light (50 vs. 300 µmol photons/m**2 /s). Comparative microarray-based transcriptome profiling was used to screen for the underlying cellular processes and allowed to follow up interpretations derived from physiological data. In the diplont, the observed increases in biomass production under OA are likely caused by stimulated production of glycoconjugates and lipids. The observed lowered calcification under OA can be attributed to impaired signal-transduction and ion-transport. The haplont utilizes distinct genes and metabolic pathways, reflecting the stage-specific usage of certain portions of the genome. With respect to functionality and energy-dependence, however, the transcriptomic OA-responses resemble those of the diplont. In both life-cycle stages, OA affects the cellular redox-state as a master regulator and thereby causes a metabolic shift from oxidative towards reductive pathways, which involves a reconstellation of carbon flux networks within and across compartments. Whereas signal transduction and ion-homeostasis appear equally OA-sensitive under both light intensities, the effects on carbon metabolism and light physiology are clearly modulated by light availability. These interactive effects can be attributed to the influence of OA and light on the redox equilibria of NAD and NADP, which function as major sensors for energization and stress. This generic mode of action of OA may therefore provoke similar cell-physiological responses in other protists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within generally calcareous sediment sequences, layers of variable thickness of the giant diatom Ethmodiscus were found in five cores recovered in the Subtropical South Atlantic between 23° and 33°S from both sides of the Mid-Atlantic Ridge. Two types of oozes occur: (almost) monospecific layers of Ethmodiscus and layers dominated by Ethmodiscus, with several accompanying tropical/subtropical, oligotrophic-water diatoms. The two thickest Ethmodiscus layers occur in GeoB3801-6 around 29°S, and accumulated during late MIS 14 and MIS 12, respectively. Downcore concentrations of Ethmodiscus valves range between 3.4 10 4 and 2.3 10 7 valves g -1. We discuss the ooze formation in the context of migration of frontal systems and changes in the thermohaline circulation. The occurrence of Ethmodiscus oozes in sediments underlying the present-day pelagic, low-nutrient waters is associated with a terminal event of the Mid-Pleistocene Transition at around 530 ka, when the ocean circulation rearranged after a period of reduced NADW production.