368 resultados para CRITICAL LAYER THICKNESS
Resumo:
This paper provides a snapshot of the permafrost thermal state in the Nordic area obtained during the International Polar Year (IPY) 2007-2009. Several intensive research campaigns were undertaken within a variety of projects in the Nordic countries to obtain this snapshot. We demonstrate for Scandinavia that both lowland permafrost in palsas and peat plateaus, and large areas of permafrost in the mountains are at temperatures close to 0°C, which makes them sensitive to climatic changes. In Svalbard and northeast Greenland, and also in the highest parts of the mountains in the rest of the Nordic area, the permafrost is somewhat colder, but still only a few degrees below the freezing point. The observations presented from the network of boreholes, more than half of which were established during the IPY, provide an important baseline to assess how future predicted climatic changes may affect the permafrost thermal state in the Nordic area. Time series of active-layer thickness and permafrost temperature conditions in the Nordic area, which are generally only 10 years in length, show generally increasing active-layer depths and rising permafrost temperatures.
Resumo:
From July 4 to 18,1995 surface chlorophyll a concentrations (C_cs) and integral primary production (C_ps) were studied in the northeastern part of the Norwegian Sea (73°42'N; 13°16'E), over a test area where an accident of the nuclear submarine Komsomolets had taken place. It was found that during this interval C_cs decreased by factor of about 3.3 (from 0.78 to 0.24 mg/m**3); average chlorophyll concentration within the photo-synthetic layer (C_cl) decreased by factor of about 3.5 (from 0.97 to 0.28 mg/m**3). The value of C_ps in the water column varied slightly (from 445 to 539 mg C/m**2 per day), since decrease in C_cl was compensated both by 1.5-fold growth of the photosynthetic layer thickness (from 40 to 60 m) and by 2.1-fold increase in its average assimilation number (from 0.58 to 1.20 mg C/mg chl a per hour). Monthly averages of C_ps were obtained from published data on seasonal C_cs changes and on the level of incident solar irradiation. They were found to be less than 100 mg C/m**2 per day in March and October and 100-500 mg C/m**2 per day in April-June. Annual primary production calculated from above values was equal to 105 g C/m**2.
Resumo:
A 6-m.y.-long composite marine record of explosive silicic volcanism from five Ocean Drilling Program sites in the subpolar North Atlantic was compared with several marine records of global and local paleoclimate proxies (benthic d18O and ice-rafted debris records). Coarsening and high frequency of occurrence of Icelandic tephras were recorded in 3.6-3 Ma sediments, suggesting that these tephras were dispersed farther from the source by enhanced westerly winds over the subpolar North Atlantic. The 40Ar/39Ar ages were determined by laser probe on K-feldspar and biotite phenocrysts of tephras that were erupted from the Jan Mayen volcanic system. Compared to the tuned paleomagnetic age model, the 40Ar/39Ar dating (0.618+/-0.007 Ma to 4.90+/-0.05 Ma) yields a new age model that postdates by 155 k.y. the inception of ice rafting on the Iceland Plateau during the cold marine isotope stage M2 (i.e., 3.3-3.14 Ma).
Resumo:
Numerous and variable silty-sandy siliciclastic turbidites were observed in Neogene pelagic sediments (late Miocene to Holocene) at Site 657: (1) thick-bedded, coarse-grained and thin-bedded, fine-grained turbidites; and (2) turbidites composed of eolian dune sand and shallow-water bioclasts or of fluvial-sand or mixed sandy component assemblages. The stratigraphic distribution of these turbidites indicates five periods during which climatic conditions and material sources change. Turbidite occurrence prior to 6.2 Ma (late Miocene) is sparse; the deposits contain coarse and fine-grained turbidites with quartz grains of eolian or mixed origin suggesting the existence of arid conditions at about 8.5 and 6.5 Ma. A coarse-grained turbidite of fluvial origin, recording a humid climate, occurs at about 6.2 Ma. During the early Pliocene, turbidites are frequent (15/Ma); they contain only fine-grained sequences comprising material of mixed origin, which indicates a more humid climate perhaps. The late Pliocene starts with rare coarse-grained turbidites of wind-transported sand while the uppermost Pliocene deposits show a higher frequency of fine-grained sequences (10/0.7 Ma) composed mainly of fluvial material. During the early Pleistocene, similar high turbidite frequency was observed (20/1.3 Ma) but with a total lack of eolian supply. During the last 0.7 Ma, the frequency decreases and the sequences are characterized by highly variable sediment components that could be related to strong variations of climatic conditions. The sedimentary characteristics of turbidites are mainly controlled by sediment source and climate. The frequency must be influenced by sea-level variations, by cyclic processes of climatic origin, and possibly by variations in the continental slope morphology. Clay mineral assemblages suggest a south Saharan source of terrigenous material during the late Miocene and the Pliocene and a northwest Saharan source during the Pleistocene.
Resumo:
In October and November 2002, high and relatively high values of chlorophyll a concentration at the sea surface (Cchl) were observed in the English Channel (0.47 mg/m**3), in waters of the North Atlantic Current (0.25 mg/m**3 ), in the tropical and subtropical anticyclonic gyres (0.07-0.42 mg/m**3), and also in the southwestern region of the southern subtropical anticyclonic gyre (usually 0.11-0.23 mg/m**3). The central regions of the southern subtropical anticyclonic gyre (SATG) and the North Atlantic tropical gyre (NATR) were characterized by lower values of Cchl (0.02-0.08 mg/m**3 for the SATG and 0.07-0.14 mg/m**3 for the NATR). At most of the SATG stations, values of surface primary production (Cphs) varied from 2.5 to 5.5 mg C/m**3 per day and were mainly defined by fluctuations of Cchl (r = +0.78) rather than by those of the assimilation number (r = +0.54). Low assimilation activity of phytoplankton in these waters (1.3-4.6 mg chl a per hour) pointed to a lack of nutrients. Analysis of variability of their concentration and composition of photosynthetic pigments showed that, in waters north of 30°N, the growth of phytoplankton was mostly restricted by deficiency of nitrogen, while, in more southern areas, at the majority of stations (about 60%), phosphorus concentrations were minimal. At low concentrations of nitrates and nitrites, ammonium represented itself as a buffer that prevented planktonic algae from extreme degrees of nitric starvation. In tropical waters and in waters of the SATG, primary production throughout the water column varied from 240 to 380 mg C/m**2 30° per day. This level of productivity at stations with low values of C chl (<0.08 mg/m**3) was provided by a well-developed deep chlorophyll maximum and high transparency of water. Light curves of photosynthesis based on in situ measurements point to high efficiency of utilizing penetrating solar radiation by phytoplankton on cloudy days.
Resumo:
The first 1400-year floating varve chronology for north-eastern Germany covering the late Allerød to the early Holocene has been established by microscopic varve counts from the Rehwiese palaeolake sediment record. The Laacher See Tephra (LST), at the base of the studied interval, forms the tephrochronological anchor point. The fine laminations were examined using a combination of micro-facies and ?-XRF analyses and are typical of calcite varves, which in this case provide mainly a warm season signal. Two varve types with different sub-layer structures have been distinguished: (I) complex varves consisting of up to four seasonal sub-layers formed during the Allerød and early Holocene periods, and, (II) simple two sub-layer type varves only occurring during the Younger Dryas. The precision of the chronology has been improved by varve-to-varve comparison of two independently analyzed sediment profiles based on well-defined micro-marker layers. This has enabled both (1) the precise location of single missing varves in one of the sediment profiles, and, (2) the verification of varve interpolation in disturbed varve intervals in the parallel core. Inter-annual and decadal-scale variability in sediment deposition processes were traced by multi-proxy data series including seasonal layer thickness, high-resolution element scans and total organic and inorganic carbon data at a five-varve resolution. These data support the idea of a two-phase Younger Dryas, with the first interval (12,675 - 12,275 varve years BP) characterised by a still significant but gradually decreasing warm-season calcite precipitation and a second phase (12,275 - 11,640 varve years BP) with only weak calcite precipitation. Detailed correlation of these two phases with the Meerfelder Maar record based on the LST isochrone and independent varve counts provides clues about regional differences and seasonal aspects of YD climate change along a transect from a location proximal to the North Atlantic in the west to a more continental site in the east.
Resumo:
A comparative estimation of particulate organic matter concentration in seawater in various regions of the Barents Sea was carried out on the basis of materials collected by authors in August-September 1997. It is shown that the major feature of near-bottom distribution of particulate organic matter is distinct decrease in its concentration from off-shore areas of the Murman and Novaya Zemlya coasts and the Franz Josef Land Archipelago toward the central part of the Barents Sea. Using a method of mean and maximum concentrations of particulate organic matter, an attempt was made to estimate its fluxes from the surface to the bottom.
Resumo:
To date, understanding of ice sheet retreat within Pine Island Bay (PIB) following the Last Glacial Maximum (LGM) was based on seven radiocarbon dates and only fragmentary seafloor geomorphic evidence. During the austral summer 2009-2010, restricted sea ice cover allowed for the collection of 27 sediment cores from the outer PIB trough region. Combining these cores with data from prior cruises, over 133 cores have been used to conduct a detailed sedimentological facies analysis. These results, augmented by 23 new radiocarbon dates, are used to reconstruct the post-LGM deglacial history of PIB. Our results record a clear retreat stratigraphy in PIB composed of, from top to base; terrigenous sandy silt (distal glacimarine), pebbly sandy mud (ice-proximal glacimarine), and till. Initial retreat from the outer-continental shelf began shortly after the LGM and before 16.4 k cal yr BP, as a likely response to rising sea level. Bedforms in outer PIB document episodic retreat in the form of back-stepping grounding zone wedges and are associated with proximal glacimarine sediments. A sub-ice shelf facies is observed in central PIB and spans ~12.3-10.6 k cal yr BP. It is possible that widespread impingement of warm water onto the continental shelf caused an abrupt and widespread change from sub-ice shelf sedimentation to distal glacimarine sedimentation dominated by widespread dispersal of terrigenous silt between 7.8 and 7.0 k cal yr BP. The final phase of retreat ended before ~1.3 k cal yr BP, when the grounding line migrated to a location near the current ice margin.
Resumo:
The overarching goal of the Yamal portion of the Greening of the Arctic project is to examine how the terrain and anthropogenic factors of reindeer herding and resource development combined with the climate variations on the Yamal Peninsula affect the spatial and temporal patterns of vegetation change and how these changes are in turn affecting traditional herding of the indigenous people of the region. The purpose of the expeditions was to collect groundobservations in support of remote sensing studies at four locations along a transect that traverses all the major bioclimate subzones of the Yamal Peninsula. This data report is a summary of information collected during the 2007 and 2008 expeditions. It includes all the information from the 2008 data report (Walker et al. 2008) plus new information collected at Kharasavey in Aug 2008. The locations included in this report are Nadym (northern taiga subzone), Laborovaya (southern tundra = subzone E of the Circumpolar Arctic Vegetation Map (CAVM), Vaskiny Dachi (southern typical tundra = subzone D), and Kharasavey (northern typical tundra = subzone C). Another expedition is planned for summer 2009 to the northernmost site at Belyy Ostrov (Arctic tundra = subzone B). Data are reported from 10 study sites - 2 at Nadym, 2 at Laborovaya, and 3 at Vaskiny Dachi and 3 at Kharasavey. The sites are representative of the zonal soils and vegetation, but also include variation related to substrate (clayey vs. sandy soils). Most of the information was collected along 5 transects at each sample site, 5 permanent vegetation study plots, and 1-2 soil pits at each site. The expedition also established soil and permafrost monitoring sites at each location. This data report includes: (1) background for the project, (2) general descriptions and photographs of each locality and sample site, (3) maps of the sites, study plots, and transects at each location, (4) summary of sampling methods used, (5) tabular summaries of the vegetation data (species lists, estimates of cover abundance for each species within vegetation plots, measured percent ground cover of species along transects, site factors for each study plot), (6) summaries of the Normalized Difference Vegetation Index (NDVI) and leaf area index (LAI) along each transect, (7) soil descriptions and photos of the soil pits at each study site, (8) summaries of thaw measurements along each transect, and (9) contact information for each of the participants. One of the primary objectives was to provide the Russian partners with full documentation of the methods so that Russian observers in future years could repeat the observations independently.
Resumo:
The described studies were carried out in the eastern part of the sea during the end of the summer seasonal succession from September 1 to October 12, 1997. Concentration of chlorophyll a in the surface layer varied from 0.09 to 1.24 mg/m**3; it tended to increase in the southern regions (<74°N). Primary production in the water column (P_p) varied from 24 to 214 mg C/m**2/day and was on average 91 mg C/m**2/day. The low level of P_p seems to result from combination of physical and chemical environmental factors unfavorable for photosynthesis (e.g. deficiency of nutrients and low values of insolation and temperature) and intensive grazing of phytoplankton by zooplankton. The lower boundary of the photosynthetic layer in open waters was located at depth 60-75 m; irradiance there was 0.1-0.5% of incident irradiance. In deep-water regions (>200 m) the subsurface maximum of chlorophyll occurred in the layer at 20-40 m; usually this maximum resulted in formation of additional maxima of primary production.
Resumo:
Deposits corresponding to multiple periods of glaciation are preserved in ice-free areas adjacent to Reedy Glacier, southern Transantarctic Mountains. Glacial geologic mapping, supported by 10Be surface-exposure dating, shows that Reedy Glacier was significantly thicker than today multiple times during the mid-to-late Cenozoic. Longitudinal-surface profiles reconstructed from the upper limits of deposits indicate greater thickening at the glacier mouth than at the head during these episodes, indicating that Reedy Glacier responded primarily to changes in the thickness of the West Antarctic Ice Sheet. Surface-exposure ages suggest this relationship has been in place since at least 5 Ma. The last period of thickening of Reedy Glacier occurred during Marine Isotope Stage 2, at which time the glacier surface near its confluence with the West Antarctic Ice Sheet was at least 500 m higher than today.
Resumo:
Sediments at the bottom of Lake Baikal are mostly oxidized at their surface, and the oxidized sedimentary deposits are enriched in Fe and Mn hydroxides. The thickness of the oxidized zone of the pelagic sediments averages at 5 cm and locally reaches 10-15, occasionally exceeding 20 cm. Both the thickness of the oxidized layer and the degree of its enrichment in iron and manganese hydroxides are controlled by the depth to which oxygen can penetrate into the sedimentary deposits, which is, in turn, closely related to the sedimentation conditions in the lake (which broadly vary). The sedimentation rate far off the shores of Lake Baikal ranges from <0.02 mm/year to 1.5 mm/year, and the content of organic matter buried in the sediments varies from 0.1 to >4%. The variability of the sedimentation process makes Lake Baikal very convenient to study its diagenetic processes related to redox reactions in sediments, first of all, processes responsible for the redistribution of Fe and Mn compounds. Although the diagenetic enrichment of Fe and Ni in bottom sediments is known to be of biogenic character, very scarce information is available so far on the microorganisms involved in the redistribution of these elements in sediments in Lake Baikal, which lately led us to explore this issue in detail. Our research was centered on the role played by the microbial community in the diagenetic transformations of Fe and Mn with reference to sedimentation conditions in Lake Baikal.
Resumo:
We tested the ability of a small dynamic penetrometer, Nimrod, to infer geotechnical properties of sediment mixtures in the inner shelf. The penetrometer is light and easy to operate, and its operation by scuba divers ensures a greater degree of precision than ship-based penetrometer deployments. We have studied selected positions along a sorted bedform (~ 100 m wide) on the continental shelf off the Coromandel Peninsula close to Tairua, North Island of New Zealand, and additionally took sediment samples at the exact positions of penetrometer impact, also by scuba divers. The derived dynamic penetrometer signatures (i) measured deceleration of the probe and estimated quasi-static bearing capacity as a measure of sediment strength, (ii) reflected changes in grain-size distribution ranging from very fine to very coarse sands, and (iii) revealed the uppermost seafloor stratification (top layer 2-6 cm) potentially being an indicator for sediment dynamics. In this manner, the device proved to be suitable for spatially fine-scaled surveys using divers' support and might deliver complementary information about sediment dynamics, in this case sorted-bedform maintenance.