360 resultados para Bio-geochemistry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lower Cretaceous sediments are frequently characterized by a well expressed cyclicity. While the processes influencing environments above the carbonate compensation depth (CCD) are reasonably well understood, almost nothing is known about the deep ocean. Cretaceous sub-CCD sediments from the Tethys and Atlantic Oceans typically show rhythmic black/green shale successions. To gain insight into the nature of these black/green shale cycles, we performed detailed geochemical analyses (X-ray fluorescence, Rock-Eval and reactive iron analysis) on a 3 m long section of latest Aptian age. The major-element distribution of the analyzed shale sequence indicates a periodic change from a high-productivity and well-oxygenated green shale mode to a low-productivity oxygen-deficient black shale mode. It is proposed here that the preservation of organic matter was dependent on the strength of salinity-driven deepwater generation. Furthermore, the data show that the Corg content covaries with changes in the detrital composition. Therefore we hypothesize that Tethyan deepwater circulation was sensitive to changes in the monsoonal system. Time series analysis suggests that these changes are periodic in nature, although we are currently unable to prove that the dominant periodicity is related to the precession component of the Milankovitch frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leg 83 of the Deep Sea Drilling Project has deepened Hole 504B to over 1 km into basement, 1350 m below the seafloor (BSF). The hole previously extended through 274.5 m of sediment and 561.5 m of pillow basalts altered at low temperature (< 100°C), to 836 m BSF. Leg 83 drilling penetrated an additional 10 m of pillows, a 209-m transition zone, and 295 m into a sheeted dike complex. Leg 83 basalts (836-1350 m BSF) generally contain superimposed greenschist and zeolite-facies mineral parageneses. Alteration of pillows and dikes from 836 to 898 m BSF occurred under reducing conditions at low water/rock ratios, and at temperatures probably greater than 100°C. Evolution of fluid composition resulted in the formation of (1) clay minerals, followed by (2) zeolites, anhydrite, and calcite. Alteration of basalts in the transition zone and dike sections (898-1350 m BSF) occurred in three basic stages, defined by the opening of fractures and the formation of characteristic secondary minerals. (1) Chlorite, actinolite, pyrite, albite, sphene, and minor quartz formed in veins and host basalts from partially reacted seawater (Mg-bearing, locally metal-and Si-enriched) at temperatures of at least 200-250°C. (2) Quartz, epidote, and sulfides formed in veins at temperatures of up to 380°C, from more evolved (Mg-depleted, metal-, Si-, and 18O-enriched) fluids. (3) The last stage is characterized by zeolite formation: (a) analcite and stilbite formed locally, possibly at temperatures less than 200°C followed by (b) formation of laumontite, heulàndite, scolecite, calcite, and prehnite from solutions depleted in Mg and enriched in Ca and 18O, at temperatures of up to 250°C. The presence of small amounts of anhydrite locally may be due to ingress of relatively unaltered seawater into the system during Stage 3. Alteration was controlled by the permeability of the crust and is characterized by generally incomplete recrystallization and replacement reactions among secondary minerals. Secondary mineralogy in the host basalts is strongly controlled by primary mineralogy. The alteration of Leg 83 basalts can be interpreted in terms of an evolving hydrothermal system, with (a) changes in solution composition because of reaction of seawater fluids with basalts at high temperatures; (b) variations in permeability caused by several stages of sealing and reopening of cracks; and (c) a general cooling of the system, caused either by the cooling of a magma chamber beneath the spreading center and/or the movement of the crust away from the heat source. The relationship of the high-temperature alteration in the transition zone and dike sections to the low-temperature alteration in the overlying pillow section remains uncertain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The late Paleocene thermal maximum (LPTM) was a dramatic, short-term global warming event that occurred ~55 Ma. Warming of high-latitude surface waters and global deep waters during the LPTM has been well documented; however, current data suggest that subtropical and tropical sea surface temperatures (SSTs) did not change during the event. Conventional paradigms of global climate change, such as CO2-induced greenhouse warming, predict greater warming in the high latitudes than in the tropics or subtropics but, nonetheless, cannot account for the stable tropical/subtropical SSTs. We measured the stable isotope values of well-preserved late Paleocene to early Eocene planktonic foraminifera from South Atlantic Deep Sea Drilling Project (DSDP) Site 527 to evaluate the subtropical response to the climatic and environmental changes of the LPTM. Planktonic foraminiferal d18O values at Site 527 decrease by ~0.94 per mil from pre-LPTM to excursion values, providing the first evidence for subtropical warming during the LPTM. We estimate that subtropical South Atlantic SSTs warmed by at least ~1°-4°C, on the basis of possible changes in evaporation and precipitation. The new evidence for subtropical SST warming supports a greenhouse mechanism for global warming involving elevated atmospheric CO2 levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At Site 534 in the Blake-Bahama Basin, western North Atlantic, an interval of 68 m of Maestrichtian (Upper Cretaceous) and upper middle to upper Eocene sediments consists of terrigenous siltstones, mudstones, and varicolored zeolitic claystones; minor recovery of micritic limestones, porcellanites, and quartzitic chert was made at this site as well. Comparisons with other Deep Sea Drilling Project (DSDP) sites in the western North Atlantic suggest that the following formations are present in this interval: Hatteras (Maestrichtian), Plantagenet (Maestrichtian and upper Eocene), Bermuda Rise (upper middle to upper Eocene), and the basal Blake Ridge Formation (upper middle to upper Eocene). Recognition of a Tertiary interval of the Plantagenet allows that formation to be divided into lower and upper informal units. Condensation makes this formal lithostratigraphic subdivision difficult. Together the formations record marked net condensed sedimentation (average rate ca. 2.5 m/m.y.) in strongly oxidizing bottom waters. From sedimentary structures and petrography, it is inferred that the terrigenous siltstones and micritic limestones were redeposited from the continental margin by turbidity currents. Chemical data plus petrography confirm relatively high plankton productivity during the upper Eocene. Much of the nonrecovered Eocene interval may represent chert and porcellanite. Fragments recovered were formed by replacement of relatively porous calciturbidites by opal-CT and quartz. Radiolarians in interbedded claystones rich in clinoptilolite show extensive dissolution. Relative to typical hemipelagic sediments, the claystones are enriched in many metals (Cu, Ni, Zn, Pb), particularly within manganese micronodules. The metal accumulation is related to a 30-m.y. period of slow net sediment accumulation, rather than to hydrothermal enrichment or to upward mobilization of metals from the underlying reduced Hatteras black shale facies. Elsewhere in the Blake-Bahama Basin, at Site 391, 22 km to the northwest, upper Eocene facies are missing, reportedly due to deep seafloor erosion of up to 800 m of the sedimentary succession. By contrast, the discovery that this interval is preserved at nearby Site 534 points to much less extensive seafloor erosion, possibly mostly in the Oligocene, which is missing at both DSDP Sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prehnite-pumpellyite facies metamorphism is described in the oceanic-arc basement rocks of Ocean Drilling Program Leg 126, Site 791 in the Sumisu Rift, western Pacific. Chemical variations of pumpellyite, epidote, chlorite, and prehnite are examined and paragenetic relations discussed. The metamorphism took place during the pre-rifting stage of an intraoceanic arc. During the backarc rifting stage, the geothermal gradient of the area was not as high as that of a spreading mid-oceanic ridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report synthesizes all of the interstitial-water chemistry studies associated with the Kerguelen Plateau phase of ODP Leg 119. Sediments were cored at six sites (49°24'S to 59°36'S) in water depths ranging from 564 to 4082 m. A total of 77 interstitial-water samples was recovered as part of the routine sampling protocol. In addition, a novel, highresolution pore-water sampling program was tested during Leg 119 that enabled us to pinpoint reaction zones and extend our data base to deeper, drier levels that were heretofore inaccessible. Data collected include interstitial-water sodium, potassium, calcium, magnesium, pH, alkalinity, sulfate, ammonia, phosphate, aqueous silica, salinity, chloride, oxidation-reduction potentials, and sediment chemistry. The northern sector (Sites 736 and 737) is characterized by the highest sedimentation rates (up to 140 m/m.y.) and thermal gradients (70°-98°C/km) encountered on the Kerguelen Plateau during Leg 119. Site 737 represents the most reactive sediment column cored on the Kerguelen Plateau. Major cation fluxes at Site 737 are the strongest measured during Leg 119. High dissolved calcium concentrations (141.5 mM) were encountered near the bottom of Hole 737B. Elevated temperatures promote silica diagenesis and the alteration of volcanic material below 300 mbsf, and a diagenetic front was discovered near 370 mbsf at Site 737. The southern portion of the Kerguelen Plateau (Sites 738 and 744) records the lowest sedimentation rates (less than 5 m/m.y.) and thermal gradients (43°C/km) of the three study areas. Major cation fluxes at the southern sites are the lowest that we measured on the Kerguelen Plateau. High-resolution sampling provided evidence for significant silica release to the pore waters during the weathering of basement basalt. The relatively low thermal gradient does not appear to be sufficient for the formation of the opal-CT and quartz chert beds and nodules that were encountered below 120 mbsf at Site 738. Sediment-accumulation rates on the Eastern Kerguelen Sediment Ridge (Sites 745 and 746) are intermediate to those of the northern and southern sites. Deposition below the regional CCD accounts for the nearly carbonate-free, siliceous sediments. Despite their low organic carbon contents (mean = 0.15%), sediments on the Eastern Kerguelen Sediment Ridge exhibit the highest pore-water alkalinity (6.77 mM), ammonium (0.50 mM), and phosphate (23 µM) concentrations measured on the Kerguelen Plateau. Major cation fluxes are intermediate to those calculated for the northern and southern sites. The Eastern Kerguelen Sediment Ridge interstitial waters are unusual, however, in that the downward flux of magnesium is greater than the upward flux of calcium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

About 13 m of Cretaceous, tholeiitic basalt, ranging from normal (N-MORB) to transitional (T-MORB) mid-ocean-ridge basalts, was recovered at Ocean Drilling Program Site 843 west of the island of Hawaii. These moderately fractionated, aphyric lavas are probably representative of the oceanic basement on which the Hawaiian Islands were built. Whole-rock samples from parts of the cores exhibiting only slight, low-temperature, seawater alteration were analyzed for major element, trace element, and isotopic composition. The basalts are characterized by enrichment in the high field strength elements relative to N-MORB, by a distinct positive Eu anomaly, and by Ba/Nb and La/Nb ratios that are much lower than those of other crustal or mantle-derived rocks, but their isotope ratios are similar to those of present-day N-MORB from the East Pacific Rise. Hole 843A lavas are isotopically indistinguishable from Hole 843B lavas and are probably derived from the same source at a lower degree of partial melting, as indicated by lower Y/Nb and Zr/Nb ratios and by higher concentrations of light and middle rare earth elements and other incompatible elements relative to Hole 843B lavas. Petrographic and trace-element evidence indicates that the Eu anomaly was the result of neither plagioclase assimilation nor seawater alteration. The Eu anomaly and the enrichments in Ta, Nb, and possibly U and K relative to N-MORB apparently are characteristic of the mantle source. Age-corrected Nd and Sr isotopic ratios indicate that the source for the lavas recovered at ODP Site 843 was similar to the source for Southeast Pacific MORB. An enriched component within the Cretaceous mantle source of these basalts is suggested by their initial 208Pb/204Pb-206Pb/204Pb and epsilon-Nd-206Pb/204Pb ratios. The Sr-Pb isotopic trend of Hawaiian post-shield and post-erosional lavas cannot be explained by assimilation of oceanic crust with the isotopic composition of the Site 843 basalts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The organic matter contained within a series of Albian to Cenomanian, dark gray to black marls was characterized using pyrolysis techniques and analysis (elemental and carbon isotopes) of isolated kerogens. It was concluded that this material had a marine affinity. Variations in geochemical characteristics reflect differences in the extent of preservation, rather than changes in organic provenance. These changes appear to reflect differences in water depth and the position of the depositional site relative to the oxygen-minimum zone. Sediments displaying the most elevated levels of organiccarbon and hydrogen enrichment probably reflect sedimentation within the oxygen-minimum zone. Waters within the oxygen-minimum zone were probably dysaerobic, rather than anoxic. The presence of at least trace quantities of oxygen at the depositional site explains the poor degree of organic preservation and the material's largely gas-prone characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During Leg 120 basalts were recovered at four drill holes on the Kerguelen-Heard Plateau. This paper reports the trace element and Sr, Nd, Hf, and Pb isotopic characteristics of these basalts and compares these basalts with Indian Ocean basalts and Kerguelen and Heard island volcanics. Kerguelen-Heard Plateau basalts are extremely heterogeneous in character. Intersite variations are larger than intrasite variations. Part of the chemical variations of the plateau volcanics overlap with those characteristics of Kerguelen Island volcanics, which indicates tapping of the same mantle source during the two different periods of activity. The estimates of the degree of melting for the plateau basalts (smaller degree of melting than for mid-ocean ridge basalts) and the heterogeneous character of the plateau exclude an origin that requires large degrees of melting or more rigorous convection than at ocean ridges. However, all characteristics indicate an oceanic origin for the Kerguelen-Heard Plateau.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conducted a six-week investigation of the sea ice inorganic carbon system during the winter-spring transition in the Canadian Arctic Archipelago. Samples for the determination of sea ice geochemistry were collected in conjunction with physical and biological parameters as part of the 2010 Arctic-ICE (Arctic - Ice-Covered Ecosystem in a Rapidly Changing Environment) program, a sea ice-based process study in Resolute Passage, Nunavut. The goal of Arctic-ICE was to determine the physical-biological processes controlling the timing of primary production in Arctic landfast sea ice and to better understand the influence of these processes on the drawdown and release of climatically active gases. The field study was conducted from 1 May to 21 June, 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Miocene to Quaternary sediments from the Oki Ridge (Site 798) and the Kita-Yamato Trough (Site 799) in the Japan Sea contain organic carbon ranging from about 0.6% in light-colored layers to almost 6% in dark layers. The organic matter consists of a variable mixture of marine and terrigenous contributions, the ratio of which is not correlated to the total organic carbon content. Marine organic particles clearly dominate in the deeper section of Hole 799B. The extractable bitumen is strongly dominated by long-chain alkenones from microalgae in the shallower sediments, whereas bishomohopanoic acid (C32) of eubacterial origin is the single most abundant compound in deeper samples. Normal alkanes and straight-chain carboxylic acids, both of which show a bimodal distribution with odd and even carbon-number predominance, respectively, are two other groups of compounds which are important constituents of the extracts. The deepest samples at Site 799 contain a considerable amount of short-chain components, which probably migrated upward from thermally more altered deeper sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To reconstruct Recent and past sedimentary environments, marine sediments of Upper Pleistocene and Holocene ages from the eastern Arctic Ocean and especially from the Nansen-Gakkel Ridge (NGR) were investigated by means of radioisotopic, geochemical and sedimentological methods. In combination with mass physical property data and lithological analysis these investigations allow clearly to characterize the depositional environments. Age dating by using the radioisotope 230Th gives evidence that the investigated sediments from the NGR are younger than 250,000 years. Identical lithological sediment sequences within and between sediment cores from the NGR can be related to sedimentary processes which are clearly controlled by palaeoclimate. The sediments consist predominantly of siliciclastic, terrigenous ice-rafted detritus (IRD) deriving from assorted and redeposited sediments from the Siberian shelfs. By their geochemical composition the sediments are similar to mudstone, graywacke and arcose. Sea-ice as well as icebergs play a major roll in marine arctic sedimentation. In the NGR area rapid change in sedimentary conditions can be detected 128,000 years ago. This was due to drastic change in the kind of ice cover, resulting from rapid climatic change within only hundreds of years. So icebergs, deriving mostly from Siberian shelfs, vanished and sea-ice became dominant in the eastern Arctic Ocean. At least three short-period retreats of the shelf ice between 186,000 and 128,000 years are responsible for the change of coarse to fine-grained sediments in the NGR area. These warmer stages lasted between 1,000 and 3,000 years. By monitoring and comparing the distribution patterns of sedimentologic, mass physical and geochemical properties with 230Th ex activity distribution patterns in the sediment cores from the NGR, there is clear evidence that sediment dilution is responsible for high 230Th ex activity variations. Thus sedimentation rate is the controlling factor of 230Th ex activity variations. The 230Th flux density in sediments from the NGR seems to be highly dependent On topographic Position. The distribution patterns of chemical elements in sediment cores are in general governed by lithology. The derivation of a method for dry bulk density determination gave the opportunity to establish a high resolution stratigraphy on sediment cores from the eastern Arctic Ocean, based on 230Thex activity analyses. For the first time sedimentation and accumulation rates were determined for recent sediments in the eastern Arctic Ocean by 230Th ex analyses. Bulk accumulation rates are highly variable in space and time, ranging between 0.2 and 30 g/cm**2/ka. In the sediments from the NGR highly variable accumulation rates are related to the kind of ice cover. There is evidence for hydrothermal input into the sediments of the NGR. Hydrothermal activity probably also influences surficial sediments in the Sofia Basin. High contents of As are typical for surficial sediments from the NGR. In particular SL 370-20 from the bottom of the rift valley has As contents exceeding in parts 300 ppm. Hydrothermal activity can be traced back to at least 130,000 years. Recent to subrecent tectonic activity is documented by the rock debris in KAL 370 from the NGR. In four other sediment cores from the NGR rift valley area tectonically induced movements can be dated to about 130,000 years ago, related most probably to the rapid climate change. Processes of early diagenesis in sediments from the NGR caused the aobilization and redeposition of Fe, Mn and Mo. These diagenetic processes probably took place during the last 130,000 years. In sediment cores from the NGR high amounts of kaolinite are related to coarse grained siliciclastic material, probably indicating reworking and redeposition of siberian sandstones with kaolinitic binding material. In contrast to kaolinite, illite is correlated to total clay and 232Th contents. Aragonite, associated with serpentinites in the rift valley area of the NGR, was precipitated under cold bottom-water conditions. Preliminary data result in a time of formation about 60 - 80 ka ago. Manganese precipitates with high Ni contents, which can be related to the ultrabasic rocks, are of similar age.